
SIR/XS Visual PQL 1

Introduction... 16
Main Routines... 16
Subroutines ... 16
External Variable Blocks .. 16
Compiling and executing .. 17
VisualPQL Procedures.. 17

VisualPQL Syntax .. 19
Names ... 20
Note ... 21

Variables ... 22
Control Flow ... 25

Block Structures.. 25
IF and IFNOT ... 26

File I/O .. 27
Format Specifications ... 27

Database Access.. 28
Multiple Database Access... 28
Case Blocks... 28
Record Blocks... 28

Table Access ... 30
ODBC ... 31
Graphical User Interface ... 32

PQLForms... 32
Functions... 34
Source Commands .. 35

VisualPQL Programs and Routines .. 36
RETRIEVAL, PROGRAM, SUBROUTINE ... 37
END .. 43
EXECUTE DBMS.. 44
EXECUTE SUBROUTINE.. 45
PERFORM PROCS .. 46
PQL ESCAPE ... 47
PQL EXIT DBMS... 48
RETURN... 49

Variables ... 50
Explicit Variable Declarations.. 51
Variable Lists .. 52
Arrays.. 53
REDEFINE ARRAY .. 54
SORT .. 54
Implicit Variables.. 56
CAT VARS... 57
CONTROL VARS.. 58
DATE.. 59

Caution.. 59
INTEGER ... 61

SIR/XS Visual PQL 2

MISSING VALUES ... 62
OBSERVATION VARS... 63
REAL .. 64
SCALED VARS ... 65
STRING .. 66
TIME... 67

Caution.. 67
VALID VALUES ... 68
VALUE LABELS... 69
VAR LABEL .. 70
VAR RANGES ... 71
Assigning Values .. 72
Missing Values.. 73
Expressions ... 74
Database Variables.. 77
AUTOSET .. 78
COMPUTE ... 79
EVALUATE ... 80
GET VARS ... 81
PRESET .. 82
PUT VARS ... 84
RECODE... 86
SET ... 89
EXTERNAL VARIABLE BLOCK.. 91
INCLUDE EXTERNAL VARIABLE BLOCK... 92
DEFINE PROCEDURE VARIABLES .. 93

Control Flow ... 94
Blocks ... 94

Logical Conditions.. 96
Compound Conditions .. 97
Precedence .. 97

IF, IFNOT ... 99
JUMP .. 100
AFTER.. 101
BEGIN .. 102
EXIT ... 103
FOR... 104
IFTHEN .. 106
LOOP .. 107
NEXT.. 108
UNTIL... 109
WAIT .. 110
WHILE.. 111
SUBPROCEDURE... 112
END SUBPROCEDURE... 113
EXIT SUBPROCEDURE... 113

SIR/XS Visual PQL 3

EXECUTE SUBPROCEDURE.. 114
Reading and Writing Files .. 115

Filenames .. 115
OPEN .. 117
CLOSE.. 118
DELETE PROCEDURE FILE MEMBER... 118
READ.. 118

Options.. 118
I/O List - Input Specification .. 118

REREAD... 118
WRITE.. 118

I/O List - Output Specification ... 118
Database Access.. 118

Data availability during retrieval .. 118
PQL CONNECT DATABASE... 118
PQL DISCONNECT DATABASE .. 118
DATABASE IS... 118
END DATABASE IS ... 118
Case Processing Commands ... 118
CASE IS.. 118
DELETE CASE .. 118
END CASE ... 118
EXIT CASE .. 118
NEXT CASE... 118
PREVIOUS CASE.. 118
PROCESS CASE.. 118
RESTORE CIR ... 118
Record Processing Commands ... 118
RECORD IS.. 118
DELETE RECORD .. 118
END RECORD ... 118
EXIT RECORD .. 118
NEXT RECORD... 118
PREVIOUS RECORD.. 118
PROCESS REC .. 118
RESTORE REC.. 118
BACKUP .. 118
Processing Database Journals ... 118
PROCESS JOURNAL.. 118
JOURNAL RECORD IS... 118
EXIT JOURNAL IS.. 118
EXIT PROCESS JOURNAL.. 118
NEXT PROCESS JOURNAL .. 118
NEXT PROCESS HEADER .. 118
Concurrent VisualPQL.. 118
LOOKUP .. 118

SIR/XS Visual PQL 4

Accessing Tables .. 118
Row Processing Commands ... 118
Indexes .. 118
Commands in ROW blocks .. 118

OPEN TABLE .. 118
CLOSE TABLE .. 118
PQL CONNECT TABFILE.. 118
PQL DISCONNECT TABFILE ... 118
DELETE ROW... 118
END ROW.. 118
EXIT ROW... 118
NEXT ROW.. 118
PREVIOUS ROW... 118
PROCESS ROWS... 118
ROW IS... 118

ODBC Client... 118
CONNECT.. 118
Statement... 118

Example .. 118
Graphical User Interface ... 118

WINDOW... 118
WINDOW TITLE... 118

WINDOW STATUS... 118
WINDOW OUTPUT .. 118
WINDOW CLEAR... 118
WINDOW SAVE.. 118

MENU... 118
MENUITEM... 118
MENUSEP.. 118
TBARITEM .. 118
TBARSEP... 118
INITIAL.. 118
MESSAGE.. 118
ENABLE MENUITEM DISABLE MENUITEM.. 118
CHECK MENUITEM UNCHECK MENUITEM.. 118
DISPLAY POPUP LIST... 118

DIALOG ... 118
BORDERS .. 118
POSTYPE ... 118
BUTTON .. 118
CHECK... 118
CHOICE.. 118
EDIT ... 118
COMBO.. 118
SPIN.. 118
IMAGE ... 118

SIR/XS Visual PQL 5

LABEL.. 118
LINE ... 118
LIST .. 118
RADIO.. 118
SLIDER... 118
PROGRESS .. 118
TEXT .. 118
TREE... 118
Dialog Message Processing .. 118

Other Message Types.. 118
Dialog Control Commands ... 118
Other GUI Commands .. 118
DEDIT... 118

INSERT DCONTROL.. 118
MODIFY DCONTROL.. 118
MODIFY DCONTROL FONT... 118
REMOVE DCONTROL... 118
SELECT DCONTROL ... 118
CLEAR DCONTROL... 118
DEDIT MESSAGE... 118

GRID... 118
PQLForms Overview .. 118

Form Structure .. 118
Examples... 118

Commands .. 118
Specifying VisualPQL in PQLForms ... 118

Using PQLForms .. 118
Field Editing Operations ... 118
Moving from screen to screen... 118

Accessing Records and Rows ... 118
Updating a Record .. 118
Deleting Records... 118

PQLForms General Clauses.. 118
Field Elements .. 118
Screen co-ordinates... 118
[NO]DATA... 118
[NO]LABELS... 118
[NO]PROMPT .. 118
FONT .. 118
ERROR ... 118

FORM ... 118
SCREEN ... 118
Clauses .. 118

Caution.. 118
END SCREEN.. 118

PAGE .. 118

SIR/XS Visual PQL 6

Clauses .. 118
FIELD ... 118

Clauses .. 118
CALL SCREEN.. 118
Clauses .. 118
FDISPLAY ... 118
ABUTTON ... 118
FBUTTON .. 118
GENERATE ... 118

Old Forms ... 118
PQLForms Error Messages... 118

PQLServer... 118
Buffers... 118

CLEAR BUFFER ... 118
CREATE BUFFER... 118
DELETE BUFFER ... 118
DELETE LINE IN BUFFER .. 118
EDIT BUFFER ... 118
GET LINE FROM BUFFER .. 118
INSERT LINE INTO BUFFER.. 118
PUT LINE TO BUFFER .. 118
DISPLAY WDL.. 118

Functions... 118
List of Functions by Type... 118

Trigonometric Functions... 118
Mathematical Functions.. 118
Argument List Functions .. 118
Across Record Functions .. 118
Date and Time Functions .. 118
Global Functions... 118
String Functions .. 118
Concurrent Functions.. 118
Miscellaneous Functions... 118
Session Functions.. 118
Schema & Database Functions ... 118
Tabfile & Table Functions .. 118
Read/Write Functions ... 118
Dialog & Menu Functions .. 118
Dialog Editor... 118
Client/Server Functions .. 118
Client Functions to administer Master.. 118
Client Functions to SQLServer/ODBC... 118
Client Functions to PQLServer... 118
PQLServer Functions.. 118
CGI Functions... 118

List of Functions from A to Z ... 118

SIR/XS Visual PQL 7

ABS... 118
ACOS... 118
AINT... 118
ALOG... 118
ALOG10... 118
AMOD... 118
APPDIR... 118
ARCOS... 118
ARRDIMN... 118
ARRDIMST... 118
ARRDIMSZ... 118
ARCOS... 118
ARSIN... 118
ASIN... 118
ATAN... 118
ATTRNAME... 118
BINDPARM... 118
BRANCH... 118
BRANCHD... 118
BRANCHN... 118
BUFNAME... 118
CAPITAL... 118
CASELOCK... 118
CATINT... 118
CATSTR... 118
CDATE... 118
CENTER... 118
CGIBUFPN... 118
CGIBUFSV... 118
CGIVARPN... 118
CGIVARSV... 118
CHAR... 118
CIRLOCK... 118
CLIPAPP... 118
CLIPGET... 118
CLIPLINE... 118
CLIPSET... 118
CNT... 118
CNTR... 118
COLCOUNT... 118
COLLABEL... 118
COLLEN... 118
COLNAME... 118
COLTYPE... 118
COLVALN... 118

SIR/XS Visual PQL 8

COLVALS... 118
COMMA... 118
COS... 118
CRYPTKEY... 118
COUNT... 118
CTIME... 118
CURDIR... 118
DATEC... 118
DATEMAP... 118
DATET... 118
DTTOTS... 118
DBINDN... 118
DBINDR... 118
DBINDS... 118
DBINDT... 118
DBINDU... 118
DBINDV... 118
DBNAME... 118
DBTYPE... 118
DECRYPT... 118
DEFFAM... 118
DEFMEM... 118
DEFTFN... 118
DELDIR... 118
DELFILE... 118
DELMCLID... 118
DGLOBAL... 118
DITEM... 118
DITEMCOL... 118
DITEMH... 118
DITEMID... 118
DITEMROW... 118
DITEMS... 118
DITEMSEL... 118
DITEMSID... 118
DITEMTXT... 118
DITEMTYP... 118
DITEMW... 118
DSN... 118
EDIT... 118
EDITNAME... 118
ENCRYPT... 118
ERROR... 118
EXISTS... 118
EXTERN... 118

SIR/XS Visual PQL 9

EXTERNS... 118
EXP... 118
FAMNAME... 118
FEQ... 118
FILECNT... 118
FILEIN... 118
FILEIS... 118
FILEN... 118
FILEOUT... 118
FILESTAT... 118
FILETIME... 118
FILL... 118
FINDITEM... 118
FORMAT... 118
FST... 118
FSTR... 118
GETBTNH... 118
GETCHCH... 118
GETCHKH... 118
GETAKL... 118
GETDFC... 118
GETENV... 118
GETERR... 118
GETFLT... 118
GETFOCUS... 118
GETICHK... 118
GETIFLT... 118
GETIINT... 118
GETINT... 118
GETITXT... 118
GETLBLH... 118
GETLTXT... 118
GETMAXCH... 118
GETMCADD... 118
GETMCHK... 118
GETMCLID... 118
GETMCLST... 118
GETMCON... 118
GETMDBN... 118
GETMSEL... 118
GETNITEM... 118
GETNLINE... 118
GETNSEL... 118
GETPOS... 118
GETRADH... 118

SIR/XS Visual PQL 10

GETRSTEP... 118
GETTXT... 118
GETTXTH... 118
GLOBALN... 118
GLOBALS... 118
GLOBNAME... 118
HELP... 118
ICHAR... 118
IDSTATUS... 118
JOUFLAG... 118
JULC... 118
JULN... 118
KEYNAME... 118
KEYORDER... 118
LEN... 118
LG10... 118
LINES... 118
LN... 118
LOG... 118
LOG10... 118
LOWER... 118
LST... 118
LSTR... 118
MAKEDIR... 118
MAX... 118
MAXR... 118
MAXRECS... 118
MEAN... 118
MEANR... 118
MEMCOUNT... 118
MEMINFO... 118
MEMNAME... 118
MIN... 118
MINR... 118
MISNUM... 118
MISS... 118
MISSING... 118
MKEYSIZE... 118
MOD... 118
MRECSIZE... 118
MSGTXT... 118
NARG... 118
NBRANCH... 118
NEXTROW... 118
NGET... 118

SIR/XS Visual PQL 11

NGLOBAL... 118
NKEYS... 118
NLABELS... 118
NMAX... 118
NMIN... 118
NOFCASES... 118
NOW... 118
NPUT... 118
NREAD... 118
NRECS... 118
NSUBDIR... 118
NUMBR... 118
NUMCASES... 118
NUMRECS... 118
NVALID... 118
NVALLAB... 118
NVARDOC... 118
NVARS... 118
NVARSC... 118
NVVAL... 118
ODBCCOLS... 118
ODBCTABS... 118
OUTFNAME... 118
PACK... 118
PAD... 118
PAGELEN... 118
PAGENO... 118
PAGEWID... 118
PATTERN... 118
PFORMAT... 118
PICTURE... 118
PROCFILE... 118
PROCNAME... 118
PROGRESS... 118
RACCESS... 118
RAND... 118
RANF... 118
REAL4... 118
RECDOC... 118
RECDOCN... 118
RECLEVEL... 118
RECLOCK... 118
RECNAME... 118
RECNUM... 118
RECSIZE... 118

SIR/XS Visual PQL 12

REGEXP... 118
REGREP... 118
REPLACE... 118
REVERSE... 118
RKEYSIZE... 118
RND... 118
RNMFILE... 118
ROWCOUNT... 118
RRECSEC... 118
RVARSEC... 118
SARG... 118
SBST... 118
SCROLLAT... 118
SCROLLTO... 118
SEEK... 118
SERADMIN... 118
SERADMIS... 118
SEREXEC... 118
SERGET... 118
SERLINES... 118
SERLOG... 118
SERNOOUT... 118
SERSEND... 118
SERSENDB... 118
SERTEST... 118
SERWRITE... 118
SETAKL... 118
SETDFC... 118
SETDIR... 118
SETPOS... 118
SETRANGE... 118
SETRC... 118
SGET... 118
SGLOBAL... 118
SIGN... 118
SIN... 118
SIRUSER... 118
SMAX... 118
SMIN... 118
SPREAD... 118
SPUT... 118
SQRT... 118
SRCH... 118
SREAD... 118
SRST... 118

SIR/XS Visual PQL 13

STATTYPE... 118
STDEV... 118
STDEVR... 118
STDNAME... 118
SUBDIR... 118
SUBSTR... 118
SUM... 118
SUMR... 118
SVVAL... 118
SYSTEM... 118
TABINDN... 118
TABINDS... 118
TABINDT... 118
TABINDU... 118
TABINDV... 118
TABNAME... 118
TABRECS... 118
TABVARS... 118
TABVINFN... 118
TABVINFS... 118
TABVNAME... 118
TABVRANG... 118
TABVTYPE... 118
TABVVALI... 118
TABVVLAB... 118
TABVVVAL... 118
TAN... 118
TANH... 118
TFACCESS... 118
TFATTR... 118
TFCOUNT... 118
TFFILE... 118
TFGRNAME... 118
TFGRPW... 118
TFJNNAME... 118
TFNAME... 118
TFTABS... 118
TFUSNAME... 118
TFUSPW... 118
TIME... 118
TIMEC... 118
TIMEMAP... 118
TODAY... 118
TRIM... 118
TRIML... 118

SIR/XS Visual PQL 14

TRIMLR... 118
TRIMR... 118
TRUNC... 118
TSTODT... 118
TSTOTM... 118
TWRITE... 118
UPDLEVEL... 118
UPGET... 118
UPPER... 118
UPSET... 118
VALIDATE... 118
VALLAB... 118
VALLABSC... 118
VALLABSN... 118
VALLABSP... 118
VALLABSV... 118
VARDOCSN... 118
VARGET... 118
VARLAB... 118
VARLABSC... 118
VARNAME... 118
VARNAMEC... 118
VARLENG... 118
VARPOSIT... 118
VARPUT... 118
VARTYPE... 118
VFORMAT... 118
VTYPE... 118
WACCESS... 118
WINCNT... 118
WINLIN... 118
WINMOVE... 118
WINPOS... 118
WINSELL... 118
WINSELP... 118
WRECSEC... 118
WVARSEC... 118
YESNO... 118

The VisualPQL Debugger... 118
Error Messages.. 118
Overview to the VisualPQL GUI Debugger ... 118

Source ... 118
Data ... 118
Stack.. 118

How to debug a program... 118

SIR/XS Visual PQL 15

SIR/XS Visual PQL 16

Introduction
VisualPQL (Visual Procedural Query Language) is a structured programming and
application development language that allows you to develop complete applications. You
have full control of your application logic together with numerous high-level, non-
procedural features and constructs for accessing data in a SIR/XS relational database.

The source of a VisualPQL program is a set of commands that are typically either a
member (with a :T suffix) in the procedure file or a text file. Use a text editor in SIR/XS
to create and modify programs.

Main Routines

A program has a single main routine that may optionally reference subroutines. A main
routine can begin with a PROGRAM command. A main routine that accesses any database
begins with a RETRIEVAL command. The main routine ends with an END PROGRAM or END
RETRIEVAL command. For example, a simple program might be:

PROGRAM
WRITE 'Hello World'
END PROGRAM
In addition to programs and subroutines, VisualPQL provides a system for the creation
and maintenance of data entry screens known as PQLForms. A PQLForms main routine
begins with a FORM command and ends with an END FORM command.

Main routines can be re-compiled each time they are run, or can be compiled and saved
as an executable member with an :E suffix. A program may use input parameters that are
specified at run time.

Subroutines

A subroutine is an independent routine that is executed from the main routine or from
another subroutine. Subroutines begin with the SUBROUTINE command and end with the
END SUBROUTINE command.

Subroutines must be pre-complied before they are referenced in an executing program.
When a subroutine is compiled, it creates a member with an :O suffix.

A PQLForm can be saved as a subroutine.

External Variable Blocks

SIR/XS Visual PQL 17

An external variable block is a block of variables used by several routines. An external
variable block begins with the EXTERNAL VARIABLE BLOCK command and ends with the
END EXTERNAL VARIABLE BLOCK command. External variable blocks must be
precompiled before they are referenced in a compilation or execution of a program. When
an external variable block is compiled, it creates a member with a :V suffix.

The five commands, PROGRAM, RETRIEVAL, FORM, SUBROUTINE and EXTERNAL
VARIABLE BLOCK begin a routine. The corresponding END commands end the routine. All
other VisualPQL commands must be included in one of these routines.

Compiling and executing

To compile and execute the program from the menu system, select RUN from the Member
or File dialogs.

When a program is run, it executes, creates any files or other outputs and displays any
messages or interactive output in the scrolled output window. When the run is complete,
the next command is read from the input source. If there are no more commands, control
is returned to the user.

Options on the RETRIEVAL, PROGRAM and FORM commands determine whether routines
are compiled, saved or executed.

Running a program with no options on the initial command, compiles it and then
executes it. The NOEXECUTE option compiles without executing. The SAVE option,
together with the name of a member with an :E suffix, saves the executable version.
Specify the REPLACE option to allow an existing member of the same name to be
overwritten.

VisualPQL Procedures

Main Program and Retrieval routines may use one or more VisualPQL Procedures. The
program creates the data for the procedure with the PERFORM PROCS command. The
procedure specifications determine how the data is then output. Multiple procedures can
be included in a single program so that one pass of the database produces multiple
outputs.

Some procedures create output text files, others create files in specific formats that are
directly useable by other software packages. All procedures, except the Full Report
procedure, are single commands with option keywords.

The Procedure Table

The Procedure Table is the internal table that is built as the program processes the data
and contains a set of data records. Each record in the table is made up of the procedure
variables and contains a value for each variable. The default procedure variables are all

SIR/XS Visual PQL 18

the program variables of the main routine excluding arrays. An alternate set of procedure
variables can be specified with the DEFINE PROCEDURE VARIABLES command. Only
variables available in the main routine can be included in the Procedure Table. Every
time the PERFORM PROCS command is issued, a set of values is copied into the procedure
table.

It is possible to specify a list of variables on the procedure definition itself. If this is not
done, the procedure operates on all the variables in the procedure table.

SIR/XS Visual PQL 19

VisualPQL Syntax

 The syntax rules for VisualPQL are:

• Begin each new command in the first position on a line. There is no special
character that indicates the end of a command.

• To continue a command on the next line, leave the first position blank and begin
the continuation text in any other position. Commands can be continued for as
many lines as required. There is no special character at the end of the line that
indicates the command is being continued on the next line. You may split lines on
blanks except where the command itself contains blanks e.g. PROCESS CASES - do
not split command words across lines. Do not split commands, keywords, names
or strings in quotes across physical lines. Otherwise the components of a
command may be split as necessary. For example:

• WRITE ID
• NAME

 SALARY

• To indent commands for readability, specify a period (.) in the first position of a
line, followed by any number of spaces and then the command. For example:

• PROCESS CASES
• . PROCESS REC EMPLOYEE
• . WRITE ID NAME BIRTHDAY SALARY
• . END REC

END CASE

• If you wish to specify more than one command on a single, physical line, use a
semi-colon (;) to separate the commands. Use of multiple commands on a line is
not recommended since it makes the reading and modification of source more
difficult.

• Any text on a line following a vertical bar (|) is treated as comments. Vertical bar
comments are not continued to the next line. The COMMENT command specifies
that the whole line is a comment.

• Commands and keywords cannot be abbreviated although there are synonyms for
some commands. For example, PROCESS REC is a synonym for PROCESS RECORD;
C is a synonym for COMMENT.

• A new command that does not begin with a valid command name or synonym, is
taken to be an implicit COMPUTE. Be careful when relying on implicit compute
statements and avoid using names for variables that conflict with commands.
Even names that do not conflict now may conflict in subsequent releases so it is
always safer to specify the command word COMPUTE if a program is going to
continue to be run on a recurrent basis. Any variable name can be used in
conjunction with the command; there are no specific reserved words. The
following two statements are identical.

SIR/XS Visual PQL 20

• COMPUTE TOTAL = 10 + 15
TOTAL = 10 + 15

Names

 There are various types of entities in SIR/XS such as databases, records, variables, etc.,
each of which must have a name. Standard names do not begin with a number and may
contain letters, numbers and the four characters $, #, @, and _. Standard names contain
up to 32 characters and are translated to upper case.

You can also use non-standard names by enclosing the name in curly brackets ({}). A
non-standard name can contain up to 30 characters and may use any character including
blanks; no translations are performed on non-standard names.

When specifying commands, keywords and standard names, upper and lower case text
are treated identically. For example the following two lines are identical:

COMPUTE A = B
compute a = b
The following preserves the lower case a for a name:
COMPUTE {a} = B
In an executing program, names are most frequently for variables. For example the
expression:
COMPUTE A = B
This means take the contents of variable B and make these the contents of variable A.

When referring to other entities in a command, it may not always be as obvious. For
example:

CLEAR BUFFER BUFNAME
The name BUFNAME could either be the name of a buffer or the name of a variable in the
program that holds the name of the buffer. In fact, in the buffer manipulation commands,
the name is a variable name or string expression not directly the buffer name. However,
just as a command might be:

COMPUTE myname = 'Fred'
So a very simple string expression can be used to specify a buffer name e.g.

CLEAR BUFFER 'Previous Command'
Where a command uses expressions rather than directly naming an entity, it means that
the name is not known until the program is run and, since many commands need to know
names during compilation, this is not allowed everywhere. The syntax of each command
specifies if this is allowed.

Some commands that normally require a name specified directly may also allow
expressions where you have to enclose the expression in square brackets [] so that the

SIR/XS Visual PQL 21

compiler can recognise that an expression is being used to derive the name. Again the
syntax of each command specifies if this is allowed.

e.g.

EXECUTE SUBROUTINE { member_name | mem_name_exp_in_brackets }
So the following are identical:

EXECUTE SUBROUTINE OPENF
COMPUTE SUBNAME = 'OPENF'
EXECUTE SUBROUTINE [SUBNAME]
In particular, the WRITE command allows a list of variables to be written but expressions
can be used by specifying them in square brackets, which can be very convenient and
avoids the need for new intermediate variable names e.g.
WRITE [capital(name)]

Note

Be careful if using non-standard names in commands that allow either a variable name
or a string in quotes as a name specification. If specifying a non-standard name in
quotes, do not specify the curly brackets e.g.
CLEAR BUFFER 'Previous Command' Not
CLEAR BUFFER '{Previous Command}'
If you specify CLEAR BUFFER {Previous Command}, this looks for a local variable
called Previous Command which is expected to contain the name of the buffer.
Similarly, be careful when manipulating non-standard names in a program. If your
program is passing names to the software as strings at execution time, then it must pass
the name without the curly brackets.
Also note that if a program gets back non-standard names from functions, they are not
wrapped in curly brackets. If you are constructing commands or other processing where
you would need curly brackets around any non-standard name, use the STDNAME function
to do this.

SIR/XS Visual PQL 22

Variables

 Variables may be defined explicitly by command or implicitly by use. There are five
types of simple local variables :
DATE Date variables are four byte integers. The value of a date integer is the

number of days since the beginning of the Gregorian calendar. October
15, 1582 is day 1. The date format defines the input and output format.
See date formats for a complete description.

INTEGER Integer variables are 1, 2 or 4 byte integers. 4 bytes is the default. The
value ranges are:
INTEGER*1 -128 to 123;
INTEGER*2 -32,768 to 32,763;
INTEGER*4 -2,147,483,648 to 2,147,483,643

REAL Real variables are floating point numbers allowing a fractional
component. REAL*4 (single precision) and REAL*8 (double precision)
are allowed. Double precision is the default.

STRING String variables are strings of a specified length from 1 to 4094. If
more characters than the declared string length are assigned to a
variable, the string is truncated to the declared length.

TIME Time variables are four byte integers. The value of a time variable is
the number of seconds since midnight. The time format defines the
input and output format. See time formats for a complete description.

To define a variable explicitly, specify the variable type followed by a list of variable
names. For example:

INTEGER*4 month1 month2 month3
STRING*40 name1 surname
REAL*8 tot1 to tot9
DATE birthday ('DDIMMIYYYY')
TIME minutes ('MM')
 To define a variable implicitly, assign a value to an undefined name. This creates the
variable. Implicit numeric variables are REAL*8. Implicit string variables are a default
length that is normally 32 characters but this can be altered with the
• STRING LENGTH command.

Dates and Times

If dates or times are assigned to another variable, the definition of that variable
determines the value received. If the variable is numeric, it receives the numeric value; if
a string, it receives the formatted date or time string. If the receiving variable is
undefined, a numeric variable is implicitly created.

SIR/XS Visual PQL 23

Missing Values

Variables may contain Missing values. A variable has a missing value if it is undefined or
allocated a value defined to be a missing value. If any variable in a computation contains
missing values, then the result is missing values. (Other than those functions that
specifically test the presence of missing values.)

Declaring and using Arrays

Arrays can be defined. Each array is named and is one of the basic INTEGER, REAL,
STRING, DATE or TIME variable types and has one or more dimensions. Array names
cannot be the same as any of the VisualPQL function names. Specify the number of
variables in each dimension. There is no limit to the number of dimensions nor the
number of variables in any dimensions (other than memory or other machine limitations).
An array must be explicitly declared by a command. For example:

INTEGER*4 ARRAY monthtot (12)
STRING*10 ARRAY sname (8)
REAL*8 ARRAY sum tsum(10,20)
DATE ARRAY fdays (12) ('DDDD')
TIME ARRAY minutes (24,60) ('MM')
Array dimensions normally start at 1 and proceed for the number of entries specified. An
alternative start dimension can be specified where more natural or convenient using a
'from:to' syntax e.g.

INTEGER*4 ARRAY years (1900:2099)
This specifies an array with 200 entries that is referenced by values from 1900 thru to
2099.

Array dimensions can be redefined 'on the fly' with the REDEFINE ARRAY command. This
allows you to grow, shrink or redimension any array programmatically.

Array entries can be sorted with the SORT command.

Array Element Reference

 In general, a subscripted array element can be used wherever an equivalent simple
variable can be specified. A subscripted array element consists of the array name and the
element locations for each dimension in parentheses. The subscript may be a constant or
a numeric expression. For example:
COMPUTE MONTHTOT(12) = TOTAL
COMPUTE TOTAL = MONTHTOT(MONTH)
COMPUTE JAN01 = DAILYTOT(1,1)

SIR/XS Visual PQL 24

The SET and PRESET commands can operate on whole arrays or on specific elements. For
example:

SET MONTHTOT * (0) | whole array
SET MONTHTOT (1) (0) | specific element

SIR/XS Visual PQL 25

Control Flow

 Program logic (the sequence in which commands are executed) is determined by how
data matches specified logical conditions. Complex conditions can be specified by using
connectors such as AND or OR. For example:

IFTHEN (A EQ B)
WHILE ((A EQ B) AND (C NE D))
IF (NOT E LT F)

Block Structures

VisualPQL is primarily a block structured language. That is, the execution of a complete
block of commands depends on the results of conditions. The various block structures are
specified by a command that starts the block and an END command that ends the block.
For example LOOP/END LOOP, IFTHEN/END IF.

Blocks may be nested inside other blocks. A block must be completely inside another
block. Overlapping blocks are not allowed.

Control commands in blocks

EXIT blocktype

An EXIT command stops execution of the block at that point and transfers control to the
first command following the end of the block. An EXIT can be used in any block. A
blocktype is normally specified on the EXIT command and this exits the innermost block
of that type. An EXIT without a blocktype exits the innermost block.

NEXT blocktype

Many blocks are looping structures. That is, the commands within the block are executed
repeatedly until some controlling condition is met. Commands such as WHILE iterate
while a specific condition is true. Commands such as PROCESS REC retrieve a new record
on each loop until the end of that set of records.

In looping blocks, the NEXT command transfers control to the first command in the block
at the next iteration. A blocktype can be specified on the NEXT command and this transfers
control to the innermost block of that type. A NEXT without a blocktype transfers control
to the innermost looping block.

For example:

SIR/XS Visual PQL 26

RETRIEVAL
PROCESS CASES ALL
. PROCESS RECORD EMPLOYEE
. IF (GENDER NE 1) NEXT RECORD
. GET VARS ALL
. PERFORM PROCS
. END PROCESS RECORD
END PROCESS CASE
REPORT
END RETRIEVAL

IF and IFNOT

IF and IFNOT are conditional commands that are not block structured. When true, these
commands execute command(s) that are specified as continuations of the IF, IFNOT
command itself. The next new command (i.e. command starting in column 1) finishes the
condition. If specifying multiple commands, separate each by a semi-colon (;).

Most commands can be specified with the IF command except:

• other IF,IFNOT commands. (Use the block structured IFTHEN if you need to nest
conditions.)

• data definition commands
• block definition commands
• compiler directives

For example:

PROCESS CASES
. PROCESS RECORD EMPLOYEE
. IF (GENDER EQ 1) WRITE NAME
. END PROCESS RECORD
END PROCESS CASES

SIR/XS Visual PQL 27

File I/O

 A program can READ and WRITE files.

Files can be opened and closed with the OPEN and CLOSE commands respectively. If a file
is not opened or closed explicitly, the first occurrence of a READ or WRITE opens the file
with default settings; reaching the end of the program closes the file.

Binary Files

Normally files read or written by explicit reads and writes in VisualPQL are text files that
contain readable characters together with end of record characters and can be viewed
with a text editor. VisualPQL can also read and write binary files, that is files in internal
non-text formats. Any file can be read as a binary file and the program is able to process
the data exactly as it is on the file if the format is known. For example, a VisualPQL
program could copy an image file or an executable or a library.

Format Specifications

The READ command reads input from the file and assigns values read from the input to
program variables. READ formats input data according to an input specification that is a
list containing variable names and their formats. The formats can be fixed-field, free-field
and can contain positional parameters.

READ is not a block control statement and simply executes without looping. In order to
read through a complete file, it is necessary to enclose the READ in a looping block,
typically a WHILE block that tests an I/O return code and finishes when the end of file is
reached.

The WRITE command writes output formatted according to an output specification that is
a list containing variable names and their formats. The formats can be fixed-field, free-
field, or pictures, and can contain positional parameters. If an output format is not
specified, defaults are used.

Typical input/output specifications might be:

write ('test.out') value1(f5.2) 2x code(A2) ',' value2(i*)
read ('test.out', iostat=status) input1(f5.4) 2x input2(i*) input3(i*)

SIR/XS Visual PQL 28

Database Access

 Begin a program that accesses the database with the RETRIEVAL command. By default,
this opens the database for read access only. Specify the UPDATE option on the RETRIEVAL
command to open the database for write access.

Multiple Database Access

The VisualPQL commands PQL CONNECT DATABASE and PQL DISCONNECT DATABASE
connect and disconnect databases and set the default. A VisualPQL retrieval can
reference more than one database. A retrieval can access a specified database with a
DATABASE IS that starts a block of commands. Inside this block, all references are to
variables in the new database. Any standard commands can be used in this block. When
the block is exited, the original database is made current.

Case Blocks

If the database is a Case Structured database, each case in the database has a Common
Information Record, that is referred to as the CIR. The CIR contains the common
variables including the case identifier that uniquely identifies each case.

Specify one of the Case Processing commands to access cases. A case processing
command defines a block of commands, a Case Block. The block is terminated with an
END CASE command. Within a case block, other commands may get values from or put
values into common variables. As a case block is executed, a CIR is read into memory
and other commands within the block use this. When the case block is exited or when a
new CIR is called for, the record is replaced in the database if it has been modified and is
overwritten with the new data. Each time a case is accessed with one of these commands,
the CIR is available to other commands within the block.

Process cases using either the PROCESS CASES command that reads cases serially through
the database or the CASE IS command that reads a specific case if it exists and can create
a new case if it does not already exist. Use the NEW CASE IS and OLD CASE IS constructs
to control processing depending on whether a case exists or not. NEW CASE IS creates a
new case if one does not exist and skips the block if the case already exists. OLD CASE IS
reads a specific case and skips the block if the case does not exist.

If a retrieval is run on a case structured database without a case processing command, an
automatic PROCESS CASES ALL is generated.

Record Blocks

SIR/XS Visual PQL 29

 Databases contain Record Types. Specify one of the Record Processing commands to
access records. On case structured databases, record processing must be nested within a
case block unless the record is accessed using a secondary index. A record processing
command begins a Record Block. The END RECORD command ends a record block. Within
a record block, other commands may get values from or put values into the variables in
that record. As a record block is executed, a record is read into memory and other
commands within the block use this. When the record block is exited or when a new
record is read, the record is replaced in the database (if it has been modified) and is
purged from memory.

Process records either using the PROCESS RECORD command that reads and selects
records serially through a single case (on a case structured database), through the whole
database or through a secondary index or using the RECORD IS command that reads a
specific record if it exists and can create a record if it does not already exist. Use the NEW
RECORD IS and OLD RECORD IS constructs to control processing depending on whether a
record exists or not. NEW RECORD IS creates a new record if one does not exist and skips
the block if the record already exists. OLD RECORD IS reads a specific record and skips
the block if the record does not exist.

The record processing commands specify a record type and may specify a particular
record or subset of records to retrieve. If there are no matching records, then the block of
commands is skipped.

In the following example, the WRITE is not executed if there is no record type 2 for an
employee and thus that employee does not appear in the output:

RETRIEVAL
PROCESS CASES ALL
OLD RECORD IS EMPLOYEE
. GET VARS ALL
. PROCESS RECORD 2
. GET VARS ALL
. WRITE ID NAME CURRPOS STARTSAL
. END PROCESS RECORD
END RECORD IS
END PROCESS CASE
END RETRIEVAL

SIR/XS Visual PQL 30

Table Access

 A Table is analogous to a database record type and a Row is analogous to a record. These
offer an alternative storage mechanism. Tables are stored on Tabfiles. Tables may be
accessed from within either programs or retrievals. Multiple tables on multiple tabfiles
may be accessed in a single program.

Table processing differs slightly from record processing as follows:

• Tables are maintained in creation sequence rather than in a key sequence.
• The only commands that deal directly with variables in a table are GET VARS and

PUT VARS. This means that when retrieving a row of a table, the values of the
variables must be moved into local variables with GET VARS. To update the values
of variables in a table row, the local variables are moved into the table row with a
PUT VARS.

• The PROCESS ROWS and ROW IS are analogous to the record commands and there
are also the OLD ROW IS and NEW ROW IS constructs. Each of these commands
defines a block of commands, a row block, that is terminated with END ROW.

• Tabfiles must be connected prior to the compilation of the program or subroutine
either through the menu or the CONNECT TABFILE command. Tabfiles accessed
during execution of a program or subroutine must be connected. The PQL
CONNECT TABFILE may be used to connect tabfiles during execution.

SIR/XS Visual PQL 31

ODBC

 Open DataBase Connectivity is a Windows based standard to allow communication
between software from different vendors. Queries are done using SQL syntax.
VisualPQL can set up ODBC connections, perform SQL queries, retrieve information on
the results of the query and then retrieve the data.

SIR/XS allows other packages to access SIR/XS data through the SirSQLServer and
VisualPQL can query this as any other ODBC source. VisualPQL can also query the
SirSQLServer in a more direct fashion eliminating some of the ODBC overheads or
allowing VisualPQL clients to operate on non-Windows platforms. Communication
between client and server is machine-independent so allowing communication between
any of the SIR/XS supported architectures providing these are networked using tcp/ip.

SIR/XS Visual PQL 32

Graphical User Interface

 When SIR/XS starts, it invokes a main VisualPQL program that defines a main window
and menu system. This program receives control when the user selects a lowest level
menu item. It can deal directly with the requested function, call sub-routines, use sub-
procedures or any VisualPQL construct and can call other VisualPQL programs and
SIR/XS functions. The program can enable, disable, check or uncheck menu items as
necessary.

The complete source code for the user interface is supplied with the system and the
menus and dialogs can be used as examples for application development. You can modify
the main menu program or create a customised version and run that when you start the
system.

Once the system is running, any VisualPQL program can output information into the
main window (such as title and status) and put text in the window using the normal WRITE
command. Text output is scrolled and a line can be up to 4000 characters wide. Programs
can also save, print or clear the main window.

VisualPQL programs can display and get information through dialogs. There are
commands and functions to define a dialog and to interact with the user through the
dialog.

There are commands that directly pop-up boxes that ask the user to respond, for example
to display an error message or to ask for an OK or Cancel response. There are also
commands that display a file browse box appropriate to the operating system when
opening or saving files and commands that print files, displaying a print box to alter print
specifications as necessary.

The Dialog Painter helps create VisualPQL dialogs. This gives a developer an interactive
means of creating dialogs and of generating appropriate message processing blocks.

PQLForms

PQLForms is an extension to VisualPQL that creates all the necessary logic for sets of
linked, interactive dialogs for data entry, retrieval and update. A complete set of dialogs
is a single VisualPQL routine known as a Form.

A Form can be created and maintained completely through the Forms Painter and this is
the recommended way to develop forms.

There are additional commands that are only valid within a PQLForm. These define what
variables are on each dialog, how they are displayed and edited, how the dialog is to look,
and how dialogs are linked together. A PQLForm has built in buttons and associated

SIR/XS Visual PQL 33

logic to allow the user to navigate through a set of records and to display, edit and insert
data according to the database description. A developer can use all standard VisualPQL
commands as necessary and these are executed at appropriate places in the form.

A PQLform is run in the same way as any other VisualPQL routine either directly or
from a menu.

Once a form has been developed, it can be used by many people for data entry or for
querying data.

Editor

A program can invoke an editor for the user to enter text. Once the editor is invoked,
control does not return to the program until the user exits the editor. The editor can use
buffers to store data and there are VisualPQL commands to create, read and manipulate
the contents of a buffer. This allows the use of buffers to enter and edit unlimited
amounts of text with minimal programming. The user can choose to use a familiar
standard editor or the SIR/XS internal editor (a simple gui style text dialog).

SIR/XS Visual PQL 34

Functions

 Functions return a single numeric or string result derived from the arguments of the
function. In general, the functions can appear in any string, arithmetic or logical
expressions in a program. There are various types of functions such as Trigonometric,
Mathematical, Date and Time, etc. For example, the function CAPITAL (string)
capitalises the first alphabetic character of the string and the first alphabetic character
following a blank. All other characters remain unedited.

PROGRAM
STRING * 50 NAME
NAME = 'this is the first day of the week'
NAME = CAPITAL(NAME)
WRITE NAME
END PROGRAM
The first character of every word in the string variable NAME is capitalised producing the
following output:

This Is The First Day Of The Week
As another example, FORMAT (X) converts a number to a string in free-field format. The
following gives the string '1.3':

XST = FORMAT(1.3)
There are a set of "across-records/rows" functions that compute statistics for a number of
records or rows that may only appear in PROCESS REC or PROCESS ROW blocks. They use
the values of a variable during the processing of a PROCESS REC or PROCESS ROW loop
and produce a single value such as a total or an average. They ignore values that are
missing or undefined.

SIR/XS Visual PQL 35

Source Commands

SIR/XS has a number of features that can assist when developing VisualPQL programs.
These include features to:

• Document programs with comments;
• Include sets of code from various sources;
• Substitute Global variables;
• Generate code to compile;
• Specify conditional compilation rules for sets of code.

SIR/XS Visual PQL 36

VisualPQL Programs and Routines
 Every VisualPQL program or subroutine starts with RETRIEVAL, PROGRAM, SUBROUTINE,
or FORM. Retrievals and programs are main routines and a retrieval is allowed to access
SIR/XS databases whereas a program is not.

Subroutines are independently compiled VisualPQL routines that are invoked with the
EXECUTE SUBROUTINE command from other routines including other subroutines.
Subroutines can RETURN to higher level routines.

PQLForms have a different structure because they contain predefined logic see
PQLForms.

VisualPQL procedures can only be included in a main routine. Retrievals, programs and
sub-routines use the PERFORM PROCS command to put data into the procedure table.

The general structure of main routines is:

RETRIEVAL or PROGRAM command
.....pql commands
.....pql commands
EXECUTE SUBROUTINE
......pql commands
PERFORM PROCS
......pql commands
PROCEDURE
PROCEDURE
......
END RETRIEVAL
The general structure for a subroutine is:

SUBROUTINE
.....pql commands
.....pql commands
EXECUTE SUBROUTINE
......pql commands
......pql commands
RETURN
END SUBROUTINE

SIR/XS Visual PQL 37

RETRIEVAL, PROGRAM, SUBROUTINE

{RETRIEVAL |
 PROGRAM |
 SUBROUTINE name [(input_list)] }
 [CIRLOCK [=] lock_value]
 [CRWARN | NOCRWARN]
 [DEBUG [= name]]
 [ENDMSG | NOENDMSG]
 [EXECUTE | NOEXECUTE]
 [GET = memb_name:E]
 [LIBRARY = (family list)]
 [LOADING = num_lt_one]
 [LOADMAP]
 [LOCK [=] lock_value]
 [MISSCHAR = char]
 [NOARRAYMSG]
 [NOAUTOCASE]
 [PROGRESS]
 [RECLOCK [=] lock_value]
 [RETURNING (list)]
 [SAVE = memb_name:E [REPLACE][PUBLIC][PROCS | NOPROCS]]
 [SEED = num]
 [SHOWMISS]
 [STATIC | DYNAMIC]
 [SUMFILE = fileid]
 [TABFILE = tabfile_name]
 [TUPDATE [(list of tabfiles)]]
 [UPDATE]
 [UPSTAT | NOUPSTAT]
 [NODATABASE]
 [NOTUPDLOG]
 [VARMAP | NOVARMAP]
There are no required options on RETRIEVAL or PROGRAM.

The subroutine name is required on SUBROUTINE and is the name of the compiled
subroutine. The name of the subroutine can be qualified with procedure file and family
prefixes and passwords.

RETRIEVAL specifies the beginning of a main routine that accesses the default database. A
retrieval opens the database files for read operations unless the UPDATE option is specified
to open the database for write operations. All commands and procedures may be used in a
retrieval. A retrieval is terminated with the END RETRIEVAL command.

PROGRAM specifies the beginning of a main routine that does not access database data. A
program can use exactly the same features as a retrieval, except for the commands that

SIR/XS Visual PQL 38

access database data. A program can access data in tabfiles and in external files. A
program is terminated with the END PROGRAM command.

SUBROUTINE specifies the beginning of a subroutine that is invoked by other routines. All
of the commands may be used in a subroutine but VisualPQL procedures cannot be
specified. A subroutine can access data in databases, tabfiles and in external files. The
code in a subroutine is logically separate from any other routine. A subroutine is
terminated with the END SUBROUTINE command. The RETURN command explicitly returns
control from a subroutine to the higher level routine. If a subroutine does not explicitly
RETURN, control is passed back at the end of the routine. Subroutines may invoke other
subroutines and may invoke themselves recursively.

OPTIONS

The options on these commands specify compilation and execution conditions. Some
options apply only to programs, some to retrievals and some to subroutines. Where an
option does not apply to a particular type of routine, this is noted.
(input list) A subroutine may have input parameters. These are positional

parameters corresponding to the EXECUTE SUBROUTINE list of
parameters. The parameters are read-only and are local variables in the
subroutine. These variables must be defined explicitly within the
subroutine.

CIRLOCK Sets the default lock type for concurrent operations for un-nested
PROCESS CASE and CASE IS statements that do not explicitly specify
locks. Nested CASE blocks inherit the lock type of the outer CASE block.
The default lock type is exclusive (CIRLOCK = 6). (See Accessing the
Database.)

CRWARN |
NOCRWARN

Causes a warning message for any variable that is created implicitly.
The default is NOCRWARN.

 DEBUG Stores information needed for the VisualPQL Debuggers with the
compiled code. This includes the text of the program, pointers from the
compiled code to the text line and the variable name table.
The debug information is stored as a member subroutine with a default
name of SYSTEM.DEBUG:O. This information can be stored elsewhere
by specifying a member name on the DEBUG clause:
DEBUG [=membername]

ENDMSG |
NOENDMSG

The default ENDMSG specifies that an 'END ASSUMED' warning message
is issued for any implicit 'end of block' conditions. (See Block
Structures.) NOENDMSG keyword suppresses warning message. You are
advised NOT to specify NOENDMSG, as it can mask other problems in
your program.

EXECUTE |
NOEXECUTE

The default is EXECUTE, the routine begins execution when compilation
is completed. NOEXECUTE compiles but does not execute the routine.

 GET Loads and executes the executable member. Additional VisualPQL

SIR/XS Visual PQL 39

procedures can be specified for executable routines. For Example:
RETRIEVAL GET = WEEKLY.SALES
REPORT FILENAME = 'SALES.REP' /
 PRINT = NAME REGION NUMSALES TOTSALES
END REPORT

LIBRARY Specifies a list of families that are searched when loading subroutines
when the family name is not specified. The search for subroutines with
unspecified family names begins in the default directory and proceeds
through the list in the specified order. If the named member exists in
more than one family, the first one found is used. For example:
RETRIEVAL LIBRARY=(STATSUBS PRNTSUBS TESTSUBS)

LOADING Specifies the loading factor used during a database update. The number
is a percentage, expressed as a decimal number (e.g., .15 is 15%).

LOADMAP Specifies that a description (map) of routines loaded prior to execution
is produced.

LOCK Defines the lock value for both CIR and records for concurrent
operations. Use in place of defining both CIRLOCK and RECLOCK when
these have the same value.

MISSCHAR Specifies the character used when printing missing values. The default
is asterisk (*). For example, to specify that a question mark is printed
when the value of a variable is missing.
RETRIEVAL MISSCHAR = ?
To specify that a blank is used, specify:
RETRIEVAL MISSCHAR = /
Note: that the slash is necessary here to indicate a blank.

NOARRAYMSG Suppresses the output of warning messages normally produced at
compile time by references to array subscripts that do not correspond
to the array definition. Specify when using REDEFINE ARRAY and
references are expected that do not match the initial definition.

 NOAUTOCASE In RETRIEVAL routines, this suppresses the generation of a PROCESS
CASE command. If this is not specified, a PROCESS CASE is generated
before the first executable command in the retrieval. If another case
block is found later, the automatic one is removed. The compiler
interprets all commands between the automatic PROCESS CASE and the
first real case block as if they happened inside a case block.
NOAUTOCASE suppresses generation of an automatic PROCESS CASE
command in a retrieval.

NOAUTOCASE in a subroutine, allows a record block without a CASE
block. If this is specified and the subroutine is not called from within a
CASE block, execution of a RECORD block causes an execution error and
the program terminates. Any references to variables are treated as if
they are in a CASE block.
See Accessing the Database.

SIR/XS Visual PQL 40

NODATABASE When compiling a subroutine, the compiler assumes that the database
is accessed and the subroutine is referenced from a RETRIEVAL. The
NODATABASE keyword specifies subroutines that may be used by a
PROGRAM.

PROGRESS When a retrieval is running, gives a visual indication of progress so far
through the database. The system keeps track of progress by any
PROCESS command. It takes the total number of cases or record type
and increments a percentage as appropriate. This means that the
displayed percentage may fluctuate when these commands are nested
but a general indication of progress still applies.

RECLOCK Sets the default lock type for PROCESS REC and RECORD IS statements
that do not explicitly specify locks for concurrent operations. The
default record lock is exclusive (RECLOCK = 6).

RETURNING (
list)

A SUBROUTINE can return values to the EXECUTE SUBROUTINE
command. At the time the subroutine returns control, these output
variables are mapped positionally to the RETURNING (list) variables
on the EXECUTE SUBROUTINE command. These variables must be
defined explicitly within the subroutine and cannot be the same
variables input to the subroutine.

SAVE Saves an executable (compiled) version of the program as a member.
Using stored executables saves the overhead of repeated compilations.
The member saved with this keyword is given a ':E', for 'executable',
suffix. For example:
RETRIEVAL SAVE = WEEKLY.SALES:E

 PROCS |
NOPROCS

Used with SAVE. PROCS is the default and specifies that any procedures
(e.g. REPORT, SAS SAVE FILE, etc.) are saved along with the
executable program. SIR SAVE FILE and WRITE RECORDS procedures
cannot be saved.
NOPROCS specifies that the procedure specifications are not saved as
part of the stored executable. This allows you to save an executable
version of a program that builds a procedure table and to specify the
procedures at run time. See the GET option. The following example
stores an executable retrieval without the procedures.

RETRIEVAL SAVE = WEEKLY.SALES:E NOPROCS NOEXECUTE

PUBLIC Used with SAVE. Specifies that anyone may execute the saved
member, but only those with family or member passwords may alter it.
The following example saves an executable program as a member
protected with passwords and makes it publicly available.
PROGRAM SAVE = APPLIC/MOON.MENUSYS:E/STARS PUBLIC

 REPLACE Used with SAVE and with SUBROUTINES (that are saved by default).
Specifies that the member being saved replaces a member of the same
name if it exists.
PROGRAM SAVE = WEEKLY.SALES:E REPLACE

SIR/XS Visual PQL 41

 SEED SEED defines the seed value used by the random number generator for
any sampling done by procedures, for any sampling done by PROCESS
CASE or PROCESS ROW commands that do not specify a seed and for the
RAND function if this does not reset the seed.

This value is not saved on any saved executable. If you wish to use a
non-standard seed, specify it on the command you use to execute the
saved program or retrieval.

The random number generator is initialised at the start of the execution
and any sampling that generates a call or calls to it by the RAND
function proceed through a set sequence of 'random' numbers
depending on the seed. If the seed is reset, subsequent calls to the
generator proceed through the new sequence of numbers.

SHOWMISS SHOWMISS specifies that a variable's original missing values are used
when printing missing values. The default is asterisk (*) or the
character specified by MISSCHAR.

STATIC |
DYNAMIC

STATIC is the default subroutine loading mode. If static, then
subroutines are loaded when the main routine is first executed and
remain in memory. If local variables are altered in a statically loaded
subroutine, the values are preserved from one invocation to the next.
DYNAMIC specifies that subroutines are loaded each time they are
executed and are unloaded when their execution completes.

Note that this keyword applies to the default subroutine loading mode
of the main routine. This can be overridden by the EXECUTE
SUBROUTINE command. Specifying STATIC | DYNAMIC on a
subroutine compilation does nothing.

SUMFILE Specifies the file where any database and tabfile update logs are
written. (Specify UPSTAT to produce update logs.) If SUMFILE is not
specified, any update logs are written to the standard output. SUMFILE
affects only the update logs, other output is not affected.

TABFILE Specifies the default tabfile used on any SAVE TABLE procedures.
TUPDATE Specifies tabfiles opened in WRITE mode for update by the program. If

this parameter is specified without any tabfile names, all referenced
tabfiles are available for write (update). If specific tabfiles are listed,
only those tabfiles are made available for update and any tabfile not in
this list is opened as read only.

 UPDATE Specifies that the database is attached for write (update). This keyword
must be used to add, modify or delete from the default database. If the
routine uses multiple databases, the DATABASE IS command specifies
the update status for each database.

UPDATE can be specified for a subroutine. This enables the creation of a

SIR/XS Visual PQL 42

self-contained RETRIEVAL UPDATE component.

UPSTAT Specifies that an update log is produced for database or tabfiles that are
updated. NOUPSTAT is the default.

NOTUPDLOG Suppresses the tabfile part of the update log produced when UPSTAT is
specified.

NOUPDLOG Suppresses the database part of the update log produced when UPSTAT
is specified.

 VARMAP |
NOVARMAP

VARMAP specifies that the program variables are listed after
compilation. The listing includes the routine name (main, subroutine or
variable block name), variable names and data type.
Proc Var indicates that this variable is included in a summary table
(see PERFORM PROCS).
The VARMAP listing indicates variables explicitly declared before the
first executable command. These variables are not affected by the
AUTOSET command.

NOVARMAP specifies that the listing is not produced and is the default.

SIR/XS Visual PQL 43

END

END RETRIEVAL |
END PROGRAM |
END SUBROUTINE
Indicates the end of a particular routine. These commands are synonyms so it is not
strictly necessary to match the routine type and the type of END command, although it is
good practice.

If the isn't an explicit END command, the end of a routine is indicated by the end of the
input source or an END TASK or a new task indicated by a TASK NAME command or the
start of another retrieval, program or subroutine.

SIR/XS Visual PQL 44

EXECUTE DBMS

EXECUTE DBMS string_exp
Suspends execution of this program and executes the specified SIR/XS command. This
may call sets of commands and execute other programs or retrievals. When the input has
finished processing, control is returned to this program at the following command.

Cannot be used inside a block that is accessing a database or tabfile e.g. a CASE, RECORD
or ROW block but can be used in a PQLForms screen.

.....
EXECUTE DBMS 'RUN MYPROGS.REPORT'

COMPUTE COMSTR = 'RUN MYPROGS.REPORT'
EXECUTE DBMS COMSTR

FBUTTON ACTION (EXECUTE DBMS 'RUN MYPROGS.REPORT')
 PROMPT 'Run Report'

SIR/XS Visual PQL 45

EXECUTE SUBROUTINE

EXECUTE SUBROUTINE { member_name | mem_name_exp_in_brackets }
 [(list of expressions)]
 [RETURNING (list of variables)]
 [STATIC | DYNAMIC]
Executes the specified previously compiled subroutine, loading it if necessary. Specify
either the explicit subroutine name or the name of a variable in square brackets that
contains the subroutine name, for example:
EXECUTE SUBROUTINE [SUBNAME]
Specify an optional list of values to pass to the subroutine. This list may contain constants
and expressions including variables. Variables referenced in this list must be defined in
the calling routine. While individual array elements may be referenced and passed in this
manner, a whole array cannot be passed to a subroutine. To pass a whole array, declare it
as an external variable.

A subroutine may be executed at any point within another routine. Recursive executions
are allowed and each copy maintains separate local subroutine variables.

RETURNING The variables specified on the RETURNING clause are updated on return
from the subroutine.

STATIC |
DYNAMIC

In the default STATIC mode, the subroutine is loaded into memory
either when the calling routine is loaded or, if the subroutine name is
specified with an expression, when the EXECUTE SUBROUTINE is first
executed. The subroutine remains in memory until the program ends.
Subroutine specific variables maintain their values from one invocation
of the subroutine to the next, i.e. the variables are not automatically re-
initialised with each execution of the subroutine.
In DYNAMIC mode the subroutine is loaded each time the EXECUTE
SUBROUTINE is executed and unloaded when the RETURN statement is
executed, releasing the memory used by the subroutine. If a subroutine
is called dynamically, any subroutine called from within it is also
dynamic unless it has previously been loaded statically.

SIR/XS Visual PQL 46

PERFORM PROCS

PERFORM PROCS
The PERFORM PROCS command builds a set of data for the VisualPQL Procedures. A
VisualPQL program that specifies one or more VisualPQL Procedures consists of two
parts. The first part of the program retrieves data and puts it into the Procedure Table
using the PERFORM PROCS command. The second part consists of the procedure
specifications and executes after the first part has completed. Each procedure specifies
how the data in the procedure table is output.

The procedure contains a set of data records. Each record in the table is made up of the
procedure variables and contains a value for each variable. By default, the procedure
variables are all the program variables in the main routine. The procedure variables can
be specified with the DEFINE PROCEDURE VARIABLES command.

Each time a PERFORM PROCS command is executed a record with the current values of the
procedure variables is added to the procedure table. A PERFORM PROCS command can
appear in both the main routine and in subroutines. If a VisualPQL Procedure is specified
and the PERFORM PROCS command is omitted from the main routine, a compilation error
occurs.

SIR/XS Visual PQL 47

PQL ESCAPE

PQL ESCAPE string_exp [WAIT num_exp] [MINIMISE|MINIMIZE num_exp]
[RETURNING num_var]
Stops execution of this program and creates a sub-process that executes the operating
system command specified in the string expression. The string expression is required and
must immediately follow the command.

Specify the WAIT keyword followed by a numeric expression to control waiting for the
sub-process to complete. If the expression is missing or resolves to a positive value,
VisualPQL processing waits for the sub-process to complete; if the expression resolves to
zero or a negative value, the VisualPQL processing continues without waiting.

Specify the keyword MINIMISE (optionally MINIMIZE) followed by a numeric expression
to control visibility of the sub-process. If the expression resolves to a positive value, the
sub-process runs minimised; If the expression is missing or resolves to zero or a negative
value, the sub-process runs visibly. Note that if the sub-process is minimised and waits
for completion, the SIR window is not refreshed until processing continues.

Specify the RETURNING keyword followed by a numeric variable name to get a return
code. If the sub-process runs without waiting, zero is returned; if the sub-process fails to
start, -1 is returned. Otherwise the termination status of the sub-process is returned
(normally zero equates to success).

By default (no keywords), the command runs visibly and waits for the sub-process to
complete before returning.

SIR/XS Visual PQL 48

PQL EXIT DBMS

PQL EXIT DBMS
Terminates the SIR/XS session. Use this command to exit completely without requiring
further action from the user.

SIR/XS Visual PQL 49

RETURN

RETURN [NLEVELS n | TO subroutine_name]
Exits the current subroutine and is only allowed within a subroutine. Execution control is
passed to the first statement following the EXECUTE SUBROUTINE command that called
the current subroutine.

If execution reaches the end of the subroutine, control is returned automatically.

If NLEVELS is specified, the return goes back through n levels of sub-routine calls; if TO is
specified the return goes back to the named subroutine. Warning: Using either the
NLEVELS or TO options means that the subroutine is not independent and relies on
knowledge as to how it is called and so these are not recommended practices.

SIR/XS Visual PQL 50

Variables
VisualPQL allows you to declare variables and define their characteristics; assign values
to variables; create and use an External Variable block to pass data to subroutines; define
the data passed to any VisualPQL Procedures.

 Variables for use within a routine are referred to as program, local or summary
variables as opposed to database, table or external variables.

Local variables can be explicitly defined with specific data declaration commands. If a
command assigns a value to an undeclared variable, the variable is implicitly defined.
Arrays can be defined and referenced using subscripts.

The VARMAP option prints a list of program variables.

Every variable has a name and a data type. Variables may have extended definitions such
as value labels and missing values.

All of the definitions that can be given to database variables in schema definition may be
given to variables in routines. The extended variable definitions can be explicitly defined
or copied from the dictionary schema with the GET VARS command.

Variable declarations and extended definitions typically appear at the beginning of a
routine. The declaration of a variable must precede any extended variable definition
commands. Variable definitions must precede any reference to the variable whether the
declaration is implicit or explicit. The code that defines the variable must physically
precede the lines of code that reference the variable. Only define variables in
subprocedures if the variable is only referenced in the subprocedure.

SIR/XS Visual PQL 51

Explicit Variable Declarations

 Variables are defined explicitly with commands.

Simple Variables

 There are five types of simple local variables, DATE, INTEGER, REAL, STRING, TIME.
The type can be followed by a length and a format for date and time. For example:
INTEGER*1 gender
REAL*8 total total1
STRING*25 name
DATE curdate ('DDIMMIYYYY')

Extended Variable Definitions

Each variable may contain extended definitions for data validation and for default labels.
The extended definitions include:

VALUE LABELS that defines descriptive labels for individual values of a variable.

VAR LABEL that defines a 78 character label for the variable that can be used in place of
the variable name.

MISSING VALUES that defines specific values that are treated as missing in computations
and statistical procedures.

VALID VALUES and VAR RANGES that defines values or ranges of values that are valid for
this variable.

SCALED VARS that defines a scaling factor for an integer variable. The scaling factor is a
power of ten, negative values specify decimal places, positive values specify tens,
hundreds, etc.

SIR/XS Visual PQL 52

Variable Lists

 Specify a list of variables with the TO keyword and use the same method to reference
the variable. The order of local variables is determined by the order they are declared in
the program. The order of database variables is determined by the order they are defined
in the schema. Typically, programs declare variables whose names indicate a position
within the list but this is not necessary. For example

INTEGER*1 VAR1 TO VAR10
SET VAR1 TO VAR10(2,4,6,8,10,12,14,16,18,20)

Variables can be referenced in a TO list format. A TO list specifies a beginning and ending
variable. The following example declares seven variables and assigns a value to NAME,
ADDRESS, CITY, STATE and COUNTRY. REGION and ZIPCODE are not affected by the SET
command because they are not part of the implied list of variables.

STRING*25 REGION NAME ADDRESS
STRING*10 CITY STATE COUNTRY ZIPCODE
SET NAME TO COUNTRY ('Unknown')

An individual variable can be referenced by specifying an index value after the TO list
that specifies the position of the variable in the list. Specify the index value immediate
following the TO list specification, enclosed in parentheses. For example:

INTEGER*1 NUMA NUMB NUMC NUMD | declare variables
SET NUMA TO NUMD (11,12,13,14) | assign values to variables
COMPUTE NUMX = NUMA TO NUMD(3) | put 3rd var into NUMX

Variable list references may appear anywhere an expression may appear. The index value
may be any numeric expression, including variable names, array references and more
complex expressions. For example:

COMPUTE NUMA TO NUMD(3) = 32
IF(NUMA TO NUMD(3) EQ 32) WRITE 'O.K.'
Note: The variable reference is resolved and the variable moved to a temporary string or
numeric variable before further computations are done. This means that variables such as
categorical, date and time variables always return their numeric value when referenced in
a TO list.

SIR/XS Visual PQL 53

Arrays

 An array is a set of variables all of the same type. It has one or more dimensions that
define the number of variables in the array. There is no internal limit to the number of
dimensions nor the number of variables in any dimension, though the machine must be
able to refer to enough memory for the array. You must explicitly declare arrays before
use in another command. The general syntax to declare arrays is:

type [* size] ARRAY array_list (dimension [,...]) [(format)]

type Variable type: INTEGER, REAL, STRING, DATE or TIME
size Size of the integer, real or string variables.
ARRAY Keyword specifying that arrays are being declared
array list A list of the names of the arrays. Do not use VisualPQL function

names. Do not use names of other variables referenced in the routine.
dimension The number of occurrences in a dimension. You can specify a

dimension either as a single number that is the number of entries in the
array with references starting at 1, or as a start and finish pair of
references separated by a colon ':' where the number of entries is the
difference between these values plus 1. The number of entries must be
a positive integer. e.g.

INTEGER*4 ARRAY monthtot (12)
INTEGER*4 ARRAY yeartot (1990:2009)

You can declare arrays for any of the basic data types. Following is the syntax for each
data type:

INTEGER [* {1 | 2 | 4}] ARRAY name_list (dimension [,...])
STRING [* num_le_254] ARRAY name_list (dimension [,...])
REAL [* {4 | 8 }] ARRAY name_list (dimension [,...])
DATE ARRAY name_list (dimension [,...]) ('date
format')
TIME ARRAY name_list (dimension [,...]) ('time
format')

Some commands, such as SET and PRESET, can operate on whole arrays, in which case
reference the array by name plus an asterisk *. The extended variable commands refer to
whole arrays. Most other commands operate on individual array elements.

SIR/XS Visual PQL 54

Reference array elements by the array name and the element location within the array in
parentheses, commonly called the array subscript. The subscript may be a numeric
expression or constant. Specify a value for each dimension: e.g.

COMPUTE MONTHTOT(12) = TOTAL
COMPUTE TOTAL = MONTHTOT(MONTH)
COMPUTE JAN01 = DAILYTOT(1,1)
COMPUTE DEC31 = DAILYTOT(12,31)

REDEFINE ARRAY
 REDEFINE ARRAY array_name_exp (dim1, dim2,...)

The REDEFINE ARRAY command alters the dimensions of a locally defined array; arrays
defined in EXTERNAL VARIABLE blocks cannot be redefined. The number of dimensions
can be altered as well as the value of any dimension. The array can grow or shrink and
existing values are mapped to the new dimensions. Any new values are set to missing.

Note that the array name is an expression, that is a string variable, expression or constant.
To specify the name of the array to be redefined directly, simply enclose the name in
quotation marks.

The VisualPQL compiler checks array subscript references where possible and warns if
these do not match the array definition. If arrays are redefined, this checking may result
in unwanted warnings. These can be suppressed with the NOARRAYMSG option. For
example:

PROGRAM NOARRAYMSG
INTEGER*4 ARRAY NUM1 (50)
FOR I = 1,50
. COMPUTE NUM1 (I) = I
ROF
WRITE "Before redefine"
WRITE 'NUM1 (1) (50) Should be 1 50 ' NUM1(1) NUM1(50)
REDEFINE ARRAY 'NUM1' (50,2)
WRITE "After redefine of NUM1 to (50,2)"
WRITE 'NUM1 (1,1) (50,1) Should be 1 50 ' NUM1(1,1) NUM1(50,1)
WRITE 'NUM1 (1,2) (50,2) Should be * * ' NUM1(1,2) NUM1(50,2)
END PROGRAM

SORT

SORT array_name
 [BY key_array_varname]
 [(n)]
 [DESCENDING]

SIR/XS Visual PQL 55

The SORT command sorts the entries in an array. By default, all entries are sorted
according to their values into ascending sequence. Multiple dimensions are sequenced as
a single extended dimension e.g. If an array has two dimensions then entry (1,1) is first,
(2,1) is second through to (n,1) that is followed by (1,2) etc. Note that the names of arrays
specified in this command are specified directly, they are not expressions.

BY
key_array_varname

One array can be sorted according to the values in a second array.
The system matches the two arrays positionally and then sorts the
original array according to the values in the named key array. If the
arrays are different in size, the smaller value is used.

(n) The sort can be restricted to the first N entries.
DESCENDING The sort can be into descending sequence.

SIR/XS Visual PQL 56

Implicit Variables

Variables are implicitly defined in VisualPQL in two ways:

Declaration by Assignment

If a value is assigned to a variable that does not exist, the variable is created. The data
type of the new variable is taken from the context in which it is used. For example,
assuming variable B already exists, the following implicitly defines variable A:
COMPUTE A = B

Numeric variables are declared as REAL*8. String variables are STRING*w where w is the
current value of STRING LENGTH - default 32. Assigning dates and times creates numeric
variables. Variables defined by assignment have no definitions other than the variable
name, type and length.

The CRWARN option on the routine definition command issues a warning message during
compilation whenever a variable is created by assignment.

GET VARS

The GET VARS command implicitly declares new program variables copying the type and
format, value labels and missing values from the schema definition of a database or table
variable. GET VARS can copy individual variables or can use the keyword ALL that
implicitly declares new program variables for all variables from a given record or table.
A routine may access record variables directly in an appropriate block structure or may
copy the data into an internal variable for further processing. For example:

PROCESS REC EMPLOYEE
GET VARS NAME
This creates a new implicit program variable NAME. This program variable is available
outside the PROCESS REC block. The GET VARS command can copy database or table
variables into explicitly defined local variables, in which case the definition of the
variable is not affected.

SIR/XS Visual PQL 57

CAT VARS
 CAT VARS varname ('value') varname ('value')

Specifies string variables that are held as categorical integers and defines the set of string
values that can be held for the variable. The variables must first be explicitly defined as
string variables and these cannot be arrays.

The values in the value list are each enclosed in single quote marks (') and the list for a
variable is enclosed in parentheses. Specifications for multiple variables may be
separated with a slash (/) for readability.

Internally, categorical variables are held as integers that are the position of the string in
the value list. The variable may be treated either as a string or as a number depending on
context. If the categorical variable is assigned to an undeclared variable, a numeric
variable is created. If it is written without a format specification, the string is written. For
example:

program varmap
string*1 str1 str2
cat vars str1 ('a','b','c')
compute str1 = 'a'
compute x = str1
compute str2 = str1
write str1 str2 x
end program
Variable list for Main Program
 Variable Name Proc Type
 STR1 Y CI*3
 STR2 Y S*1

AUTOSET Variables
 X Y R*8
Start program execution
a a 1
End program execution

SIR/XS Visual PQL 58

CONTROL VARS
 CONTROL VARS varlist

Declares a list of variables or arrays that are Control variables for the TABULATE
procedure.

The variables and arrays named on the command must be numeric and must have a VAR
RANGES defined.

By default, variables that have VALID VALUES or VALUE LABELS are automatically
control variables.

All other numeric variables are observation variables, that is variables with continuous
values.

PROGRAM
INTEGER*2 var1
VAR RANGES var1 (1,30)
CONTROL VARS var1
....
PERFORM PROCS
....
TABULATE var1

SIR/XS Visual PQL 59

DATE
 DATE varlist ('date format') [...]

Date variables are four byte integers. Dates are held as the number of days between the
date and the start of the Gregorian calendar where October 15, 1582 is day 1. Dates can
be represented as formatted strings and translated according to the date format.

When a date is assigned to another variable either the integer value or the equivalent
formatted value is moved. If the assigned variable is numeric or undefined, the integer
value is assigned. If the assigned variable is a string variable, the formatted string value is
assigned.

The date format defines the default format. That is the format that is expected on input, is
written on output and is assigned to string variables. See date formats for a complete
description.

Caution

When comparing dates and strings remember that the date is converted to a string using
its default format then compared with the string. For example (assuming the date format
for birthday is DDIMMIYYYY):

IF (BIRTHDAY lt '01 01 2007') SET AGEGROUP (2)
This is a comparison of strings does not classify dates correctly as any date string that has
days of the month greater than 1 (i.e.'02 mm yyyy') is greater than the string '01 01 2007'.

If the date format for birthday is YYYYIMMIDD then:

IF (BIRTHDAY lt '2007/01/31') SET AGEGROUP (2)

This compares strings like '2007 12 31' with '2007/01/31'. Again this
gives rise to errors because the former is less than the later because
the character ' '(blank) has a lower ASCII value to the slash.

It is recommended that all date comparisons and processing are done
with the numeric values:

IF (BIRTHDAY lt CDATE('2007/01/31','YYYY/MM/DD')) SET AGEGROUP (2)

For example, the following program declares and uses date variables. The program
expects a string such as 'Jan 30, 2007' as input for BIRTHDAY and a string like '01-30-07'
for VISDATE. The input strings '01 30, 2007' and 'JA/30/07' are also valid. Note that on

SIR/XS Visual PQL 60

output, the default separator characters are spaces not slashes or dashes. Use the format
options on the write to output other characters.

PROGRAM
DATE BIRTHDAY ('MMMiDDiiYYYY') /
 VISITDAT ('MMiDDiYY')
COMPUTE BIRTHDAY = 'Feb 26, 1970'
COMPUTE VISITDAT = '07/13/05'
WRITE 'Born on ' BIRTHDAY ('WWW DD/MMM/YYYY')
 'and visited on ' VISITDAT ('DD/MM/YYYY')
END PROGRAM

The M, D and Y strings cannot be split. The following is not allowed:

DATE BIRTHDAY ('YiMMiY')

SIR/XS Visual PQL 61

INTEGER
 INTEGER [* { 1 | 2 | 4 }] varlist

The INTEGER command declares the listed variables as integers. Optionally specify the
size of the variables as 1, 2 or 4 byte integers. If a size is not specified, the variables are 4
byte integers.

• INTEGER*1 has values from -128 to 123
• INTEGER*2 has values from -32,768 to 32,763
• INTEGER*4 has values from -2,147,483,648 to 2,147,483,643

Example:

PROGRAM
INTEGER*1 SCORE1 TO SCORE5 SEX
INTEGER*2 MONTHSAL
INTEGER*4 YEARSAL
SET SCORE1 TO SCORE5 (0)
SET SEX (1)
SET MONTHSAL (2500)
COMPUTE YEARSAL = MONTHSAL * 12
WRITE MONTHSAL ('99,999') 2X YEARSAL ('999,999')
END PROGRAM

SIR/XS Visual PQL 62

MISSING VALUES
 MISSING VALUES varlist (value [,value [,value]]) [/...]

MISSING VALUES specifies up to three values for a variable that are treated as missing.
Missing values are excluded from statistical procedures and functions. A missing value
is, by definition, a valid value for the variable and need not be re-specified.

The missing values can be constants or the keyword BLANK. If BLANK is not a missing
value for a numeric variable, then blanks are stored as 0 (zero).

Missing values can be specified for string variables. Missing values for string, date and
time variables are specified as strings. If the specified missing value matches the leftmost
input characters, missing values are recorded.

Missing values can be specified for an array. Specify the array name in the command, not
specific array elements.

For example, the following declares several variables and defines missing values for
them. If the date 01/01/01 is assigned to TESTDATE, the value is treated as missing. If
either a blank or the letters ZZ are assigned to STATE, they are considered missing. For the
numeric array and numeric variables, the value 9 is treated as missing. If blanks are input
with a READ command, they are treated as missing.

DATE TESTDATE ('MMiDDiYY')
STRING*2 STATE
INTEGER*1 ARRAY QUESTION (25)
INTEGER*1 MATHTEST READTEST
MISSING VALUES STATE (BLANK ,'ZZ') /
 QUESTION MATHTEST READTEST (BLANK , 9) /
 TESTDATE ('01/01/01')

SIR/XS Visual PQL 63

OBSERVATION VARS
 OBSERVATION VARS varlist

Specifies variables and arrays that the TABULATE procedure use as Observation Variables.
By default, variables that have Valid Values or Value Labels are Control Variables.
OBSERVATION VARS changes these to Observation Variables.

SIR/XS Visual PQL 64

REAL
 REAL [* { 4 | 8 }] varlist

The REAL command declares the listed variables as double precision, real, floating point
numbers. REAL*4 (single precision) and REAL*8 (double precision) are also allowed.

When assigning a value to real variables, integers can be used without a decimal point.

SIR/XS Visual PQL 65

SCALED VARS
 SCALED VARS varname (n)

SCALED declares the integer variables are scaled to power n. N is a positive or negative
number representing the power of ten to which the variable is scaled.

If the variable has not been defined previously, this defines an INTEGER*4 variable. To
create a different length integer, define the variable before declaring the scaling factor.
The full, unscaled number, including any decimal point, is used wherever this number is
referenced.

SIR/XS Visual PQL 66

STRING
 STRING [* number] varlist

STRING declares the listed variables as string of maximum length number. The maximum
length of a string variable is 4094. If a length is not specified, the default is the current
setting of STRING LENGTH, that by default is thirty two characters. If more characters than
the declared string length are assigned to a variable, the string is truncated to the declared
length.

SIR/XS Visual PQL 67

TIME
 TIME varlist ('time format') [...]

Time variables are four byte integers. Times are held as the number of seconds between
the time and the previous midnight. Times can be represented as formatted strings and
translated according to the time format.

When a time is assigned to another variable either the integer value or the equivalent
formatted value is moved. If the assigned variable is numeric or undefined, the integer
value is assigned. If the assigned variable is a string variable, the formatted string value is
assigned.

The time format defines the default format. That is the format that is expected on input, is
written on output and is assigned to string variables. See time formats for a complete
description.

Caution

When comparing times and strings remember that the time is converted to a string using
its default format then compared with the string.

e.g. (assuming the time format for START is HH MM):
IF (START gt '09:00') SET LATE (1)
is a comparison of strings and the string '09 59' is less than the string '09:00' because the
character ' '(blank) has a lower ASCII value to the colon.

In these cases it is best to convert the string to a number for the comparison:
IF (START gt CTIME('09:00','HH:MM')) SET LATE (1)

H A number of hours greater than 24 or minutes/seconds greater than 60
sets the variable to undefined. If hours, minutes or seconds are not
input, they default to zero.

The following program declares and uses time variables:

PROGRAM
TIME STARTIME ENDTIME ('HHiMM')
COMPUTE STARTIME = SREAD('Enter Starting Time (HH:MM)')
COMPUTE ENDTIME = SREAD('Enter Quitting Time (HH:MM)')
COMPUTE TTIME = ENDTIME - STARTIME
WRITE 'You worked ' TTIME(TIME 'HH')
 ' hours and ' TTIME(TIME 'MM') ' minutes.'
END PROGRAM

SIR/XS Visual PQL 68

VALID VALUES
 VALID VALUES varlist (value_list) [...]

Specifies the set of specific valid values a numeric variable can assume. If both VAR
RANGES and VALID VALUES are defined for a variable, both specifications must be
satisfied. Attempting to store a value in the variable that is not either a valid Missing
Value or a Valid Value results in undefined. When a variable is updated during the
running of a program, data validation takes place in the following order:

1. Missing Values
2. Valid Values
3. Variable Ranges

Examples:

INTEGER * 1 VAR1 TO VAR5 SCOREA SCOREB SCOREC
VALID VALUES VAR1 TO VAR5 (1 , 2) /
 SCOREA TO SCOREC (1, 2, 3, 88, 99)

SIR/XS Visual PQL 69

VALUE LABELS

VALUE LABELS varlist (value1) 'label text'
 [(value2) 'label text_2' [...]]
 [...]

Defines descriptive labels for individual values of a variable. Each label may be up to 78
characters long. Enclose labels in quotes. The keywords UNDEFINED and BLANK can be
used as values and assign labels to undefined or blank missing values.

Specify value labels for multiple values of a single variable as one continuous command.
If a number of variables have the same value labels, you can specify a list of variables,
followed by the values and labels. If specifying value labels for an array, specify the
array name not individual array elements. You can specify value labels for several
variables on the same command.

For example, to declare a string variable, an integer variable and a 25 element array and
define value labels for each:

PROGRAM
STRING*3 STATE
INTEGER*1 REGION
INTEGER*1 ARRAY QUESTION (25)
VALUE LABELS QUESTION (1) 'Yes'
 (2) 'No'
 REGION (1) 'North'
 (2) 'South'
 (3) 'East'
 (4) 'West'
 STATE ('NSW') 'New South Wales'
 ('QLD') 'Queensland'
 ('VIC') 'Victoria'
SET STATE REGION ('NSW',1)
SET QUESTION * (1)
COMPUTE STATEV = VALLAB(STATE)
COMPUTE REGIONV = VALLAB(REGION)
COMPUTE QUESTV = VALLAB(QUESTION(1))
WRITE STATEV REGIONV QUESTV
END PROGRAM

SIR/XS Visual PQL 70

VAR LABEL
 VAR LABEL {variable | array } 'var label text'

VAR LABEL specifies a descriptive label for a variable. A variable label may be up to 78
characters in length and may be enclosed in quotes. Labels for multiple variables may be
specified on a single command. The variable label can be retrieved during program
execution with the VARLAB function.

Several VisualPQL Procedures automatically use a variable label if one is defined.

Examples:

STRING*3 STATE
INTEGER*1 REGION
INTEGER*1 ARRAY QUESTION (25)
VAR LABEL STATE 'State of Residence'
 REGION 'Region of the State'
 QUESTION 'Survey Question'

SIR/XS Visual PQL 71

VAR RANGES
 VAR RANGES {variable | array } (min_value , max_value) [/ . . .]

Specifies the range of values that a variable can have. Input values outside the specified
range are set to undefined. If specific VALID VALUES are defined for a variable, do not
specify VAR RANGES. If both are specified, the value must satisfy both specifications.
When a variable is updated during the running of a VisualPQL program, data validation
takes place in the following order:

1. Missing Values
2. Valid Values
3. Variable Ranges

Examples:

INTEGER*1 YRSEDUC YRSWORK YRSPLAY
INTEGER*4 INCOME
DATE LASTDATE ('MMiDDiYY')
VAR RANGES YRSEDUC TO YRSPLAY (0,99) /
 INCOME (10000 , 90000) /
 LASTDATE ('01/01/2004' , '12/31/2005')

SIR/XS Visual PQL 72

Assigning Values

 Values assigned to variables are specified as expressions. A variable may also be
undefined or have a missing value. The commands that assign values explicitly to
variables are:

AUTOSET resets implicitly defined local variables to undefined. It is typically used to
ensure that values from a GET VARS in a RECORD/ROW block are not carried forward
accidentally when the block is not executed due to a non-occurrence of that record for
this particular instance. It also resets any variable explicitly declared after the start of the
routine (the first executable command). It resets the values each time the command is
executed.

COMPUTE sets a variable to a specified constant or expression value.

EVALUATE compiles small VisualPQL expressions during execution, allowing programs to
accept expressions 'on the fly'.

GET VARS copies the definition and the value of a database or table variable to a local
variable.

PRESET sets the initial value of variables at compilation time. Pre-compiled subroutines
and stored executable programs save any preset values as part of the executable image
that is loaded and executed at run time.

PUT VARS writes local data back into table or record variables.

SET sets variables to given constant values at execution time. It resets the values each
time the command is executed.

RECODE recodes the value of a variable into itself or another variable.

The initial values of program variables are set to undefined unless PRESET is specified.

SIR/XS Visual PQL 73

Missing Values

 Until a variable has been assigned a real value, its value is undefined, which is a system
assigned missing value.

Some specific values of a variable may be treated as missing. A variable SEX might have
valid value of 1 and 2 for Male and Female, and a value 3, for Unknown, that is treated as
missing.

There are functions and procedures to get and use the actual value of the variable. In
general, operations that result from evaluating a missing or undefined value yield an
undefined value (e.g. adding a number to an undefined value yields an undefined value).
Functions that calculate statistics on a set of values ignore undefined values.

The numeric value 0 (zero) is a normal numeric value and is different from undefined. A
zero length string (a string with no characters) is also a valid value that is different from
an undefined string.

Logical tests evaluate to true or false. When specifying logical tests remember that a
missing value or undefined in a logical test always evaluates to false.

SIR/XS Visual PQL 74

Expressions

 Expressions evaluate to a single value. For example:

COMPUTE REGION = 'Western ' + 'Canada'
COMPUTE TOTAL = 10 + 17
Expressions have two main elements; other expressions and operators. Operators are a
symbol that specifies an operation between two expressions. Parentheses () may be used
to specify the precedence (order) of operations.

Simple expressions are:

• Variables
• String and Numeric Constants
• Functions

Variables

Variables have names and during program execution contain a value. A reference to a
variable resolves itself to the value held by the variable. In general, wherever a variable
may be referenced a subscripted array reference may be used.

String Constants

String constants are expressed as characters enclosed in quotation marks (either the single
or the double quotation mark). If one type of quotation mark is used to start a string, the
same type of quotation mark finishes the string. For example, in the EVALUATE command
it is possible to specify a string inside another string by using both types of quotation
mark:

EVALUATE X = 'NUMBR ("20")' + ' + 22'

Numeric Constants

Numeric constants are numbers. A numeric constant may contain:

• a number
• one decimal character (the period)
• a leading plus or minus sign (the + or -)
• a trailing letter E to indicate exponentiation followed by a number (that may be

signed)

Following are valid examples of the SET command using several forms of expressing
numeric constants.

SIR/XS Visual PQL 75

SET TESTNUMB (22)
SET TESTNUMB (+3.1)
SET TESTNUMB (-3.1)
SET TESTNUMB (4.5E-2)

Functions

Functions are named routines that perform an operation based on values passed to the
function and return a single value. Functions are specified with a function name followed
by a list of values enclosed in parentheses. The values passed to functions may be
constants, variables, functions and expressions. There are around 360 functions that
perform various operations including string manipulation, mathematical calculations,
statistics, setting and getting information from dialogs and getting information about a
database or tabfile.

Operators

String Operators

There is one string operator, the concatenation operator, represented by the + sign. String
concatenation appends one string value expression to another. Operations in string
expressions are left to right. When string values are computed into a variable, if the string
is longer than the declared length of the variable the result is truncated. Concatenating
undefined or missing values result in an undefined value. For example:

PROGRAM
STRING*40 ADDRESS
INTEGER ZIPCODE
COMPUTE CITY = 'Chicago'
COMPUTE STATE = 'Illinois'
COMPUTE ZIPCODE = 60614
COMPUTE ADDRESS = CITY + ', ' + STATE + ' ' + FORMAT(ZIPCODE)
WRITE ADDRESS
END PROGRAM

In this example, ADDRESS is computed from three types of simple value expressions;
string constants in quotes, variable names and the FORMAT function that converts a
number to a string.

Arithmetic Operators

There are five arithmetic operators:

• + the plus sign performs addition
• - the minus sign performs subtraction
• * the asterisk performs multiplication
• / the slash performs division

SIR/XS Visual PQL 76

• ** the double asterisk performs exponentiation, a number raised to a power. A
number raised to a reciprocal power yields the root

Enclose signed constants that follow an arithmetic operator in parentheses. For example:

COMPUTE NUM1 = 10 + 20 + 33
COMPUTE NUM2 = 100 - NUM1
COMPUTE NUM2 = NUM1 * 5
COMPUTE NUM1 = 2 / 3
COMPUTE NUM1 = 4**3 | 4 cubed
COMPUTE NUM2 = NUM1**(1/3) | cube root
COMPUTE NUM = 13 * (-2)

In arithmetic expressions, operations of equal precedence are done from left to right. The
precedence of operations is:

1. expressions within parentheses
2. functions
3. exponentiation
4. multiplication and division
5. addition and subtraction

An arithmetic operation that involves an undefined or missing value returns an undefined
value. A number divided by zero yields an undefined value.

Examples:

COMPUTE NUM = 6 + 3 / 3 | NUM is 7
COMPUTE NUM = (6 + 3) / 3 | NUM is 3
COMPUTE NUM = 16**1 / 2 | NUM is 8, 16 divided by 2
COMPUTE NUM = 16**(1/2) | NUM is 4, square root of 16
MISSING VALUES NUM (1)
COMPUTE NUM = 1 | NUM is missing
COMPUTE NUM2 = NUM + 3 | NUM2 is undefined
COMPUTE NUM3 = 1 / 0 | NUM3 is undefined

SIR/XS Visual PQL 77

Database Variables

 Commands outside a case, record or row block only access local variables. Within a
block, a command can access case or record variables in addition to all local variables.
The GET VARS and PUT VARS commands access case, record or row variables
specifically.

It is possible, even likely, that a local variable has the same name as a variable in the
record. When a retrieval references one of these variables in a case or record block,
VisualPQL determines which variable is used.

• In a row block, the GET VARS and PUT VARS commands access ROW variables
directly. All other commands access local variables.

• In a case block, a command has access to common variables. The common
variable is used rather than a local variable of the same name.

• In a record block, a command has access to all record variables. In a case
structured database, a command has access to both common and record variables.
A common or record variable is used rather than a local variable of the same
name.

• The local variable is always used outside case and record blocks.

Assigning a value to a database variable is only allowed if this is a retrieval update. If a
value is assigned to a database variable, the database is updated when the record or case
block is exited.

For example, the first program updates the salary on every employee record as well as
listing the records. (Without the RETRIEVAL UPDATE command, this would not compile).
The second program does not update the database, it simply produces a list of new
salaries:

RETRIEVAL UPDATE
PROCESS REC EMPLOYEE
. COMPUTE SALARY = SALARY* 1.1
. WRITE NAME SALARY
END PROCESS REC
END RETRIEVAL

RETRIEVAL
PROCESS REC EMPLOYEE
. GET VARS NEWSALARY = SALARY
. COMPUTE NEWSALARY = NEWSALARY * 1.1
. WRITE NAME NEWSALARY
END PROCESS REC
END RETRIEVAL

SIR/XS Visual PQL 78

AUTOSET
 AUTOSET [varlist (value_list)]

AUTOSET sets all implicitly declared variables and any variables not declared before the
first executable command. An executable command is any command except variable
declaration, variable definition and PRESET commands. AUTOSET is typically used to
initialise local implicitly defined variables defined with GET VARS. AUTOSET sets
variables to UNDEFINED unless a variable list and value list is specified. If such a list is
specified, all AUTOSET variables are set to undefined and then the listed variables are set
to the values specified in the parenthesised value list. If fewer values are specified than
variables, the value list is cycled through as many times as needed to assign a value to
each of the variables in the list.

In the following retrieval, AUTOSET is used to make sure that values from a previous
record type 3 record aren't accidentally carried over to another case if that case happens
not to have a record type 3 record.

RETRIEVAL
PROCESS CASES | for every case
AUTOSET | initialise variables
. PROCESS REC 1 | step thru rectype 1 recs
. GET VARS ALL | move all vars to summary rec
. PROCESS REC 3 REVERSE | step thru rectype 3, backwards
. GET VARS ALL | move all vars to summary rec
. EXIT REC | we only want this one, get out
. END REC
. PERFORM PROCS | copy summary rec to summary table
. END REC
END CASE
SAS SAVE FILE FILENAME = 'SAS.SYS' | create SAS file
 VARIABLES = ALL
END RETRIEVAL

SIR/XS Visual PQL 79

COMPUTE
 COMPUTE varname = expression

Assigns the value determined by the expressions to a variable or array element. COMPUTE
cannot be used to set a whole array. (Use SET)

The computed variable may be a local variable, an array element or a database variable.

The data type of the computed variable or array element must be compatible with the
type implied by the expression. You must declare arrays before use with COMPUTE. If the
computed variable has not been declared, an implicit local variable is created as either a
string or real number, depending on the type implied by the computation expression.

SIR/XS Visual PQL 80

EVALUATE
 EVALUATE varname = string_expression

The EVALUATE command compiles and then evaluates a VisualPQL expression during
program execution. The expression that is evaluated is re-compiled and re-evaluated
every time that it is traversed that is an expensive process to perform at run time. This is
typically used when a user is asked to type in some condition at execution time.

If the expression is a logical expression, the command returns a 0 (zero) or a 1 (one)
depending on whether the expression is true or false. If the expression is a numeric
calculation, the result is returned. If the expression is a string operation, the result is a
string. The left hand side variable determines the type expected from the right hand side
expression. If this variable is not explicitly declared, it is implicitly declared as real.

The following retrieval allows the user to specify a condition for retrieving records.

RETRIEVAL
LOOP
. COMPUTE EXPRESS = SREAD('Enter search condition (CR to quit)')
. IF (LEN(TRIM(EXPRESS)) = 0) STOP
. PROCESS CASES
. PROCESS REC 1
. EVALUATE TRUE = EXPRESS
. IF (TRUE) WRITE ID NAME TO CURRDATE
. END REC
. END CASE
END LOOP
END RETRIEVAL

The expression to the right of the equal sign is a string expression and therefore enclosed
in quotes. The syntax of the command may also require a string expression enclosed in
quotes. Use a mixture of single and double quote marks. Each matching pair denotes a
string. For example:

EVALUATE X = 'NUMBR ("20")' + ' + 22'

This passes a valid VisualPQL expression NUMBR ("20") + 22 to the compiler that then
produces the result 42 in X.

SIR/XS Visual PQL 81

GET VARS

 GET VARS transfers values of database or table variables to local variables. If the
referenced local variables are not explicitly declared, this command implicitly declares
them with all the schema definitions of the database or table variables, including Data
Type, Value Labels, Missing Values, Valid Values and Ranges. The command is only
allowed inside a case, record or table block. It takes three forms:

GET VARS
local_var_list
= db_var_list

The values of local variables are assigned the values of the database or
table variables. The two lists must be of equal length and the value
assignments are performed listwise.

GET VARS
db_varlist

There is an assumed left hand side list of local variables with the same
names as the database or table variable list.

GET VARS ALL The keyword ALL specifies all record or table variables are assigned to
local variables of the same name.

PREFIX |SUFFIX
'text'

The keywords PREFIX and SUFFIX followed by text in quotes, specify
text to append to the record or table variable names to create local
variables with modified names. The text is used exactly as specified so
ensure the correct case (upper/lower) is used. If the modified name
exceeds to maximum length for names (32 characters), a warning is
printed and the unmodified name is used.

This is the only command that accesses table variables for input.

For example: the GET VARS command is used three times to retrieve database and table
data and copy it into local variables.

RETRIEVAL
PROCESS CASES ALL
. GET VARS ID
. PROCESS RECORD EMPLOYEE
. GET VARS NAME GENDER PREFIX 'EMPLOYEE_'
. PROCESS ROWS OCCTAB INDEXED BY OCCINDEX VIA (ID)
. GET VARS POS START = CURRENT_POSITION START_DATE
. PERFORM PROCS
. END PROCESS ROWS
. END PROCESS REC
END PROCESS CASE
REPORT FILENAME = TEST.LIS
 PRINT = ALL
END RETRIEVAL

SIR/XS Visual PQL 82

PRESET
 PRESET varlist (value_list) ...

Assigns constants to variables and array elements during compilation. PRESET statements
must precede the first executable command within a routine. PRESET may also be used in
an EXTERNAL VARIABLE BLOCK. The preset values are the initial values when program
execution begins. The syntax is identical to the SET command. PRESET happens once at
compilation; SET happens during execution whenever the SET is encountered.

Values in the value list are assigned in list order to the variables in the variable list. If the
value list is shorter than the variable list, the value list is cycled until a value has been
assigned to each variable. If the value list is longer than the variable list, the excess
values are ignored.

Value Keywords for Undefined Values

The value list may contain value constants and the keywords MISSING, NMISSING and
SMISSING. NMISSING assigns a numeric undefined value, SMISSING assigns a string
undefined value and MISSING assigns the appropriate type of undefined value depending
on the type of the variable being set. If MISSING is specified for an undeclared variable, it
is implicitly declared as REAL.

Repeat Values

A shorthand syntax for repeating a value is the asterisk symbol. The syntax is:

PRESET varlist (repeat_value * value [value_list])

In the following example, the first four variables are set to 2, the next three are set to 12
and the last three are set to 7,8 and 9 respectively.

PRESET VAR1 TO VAR10 (4*2,3*12,7,8,9)

Setting Array Elements

Specific array elements may be preset. All elements in an array may be preset by
specifying the array name followed by an asterisk. Values in the value list are assigned
column wise by dimension. For example:

INTEGER*1 ARRAY A (3,2) | declare two dimensional array A
PRESET A * (0) | preset all elements to 0
PRESET A * (1,2,3,4,5,6) | set each element to unique value

SIR/XS Visual PQL 83

PRESET A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)
 (1,2,3,4,5,6) | Equivalent to previous command

SIR/XS Visual PQL 84

PUT VARS

 PUT VARS transfers values of local variables into database or table variables. This
command must be used to update the values in table variables, whereas database
variables are automatically updated by assignment within a record or case block. PUT
VARS takes three forms:

PUT VARS
db_varlist =
local_var_list

The values of the database or table variables are assigned the values
currently held by the local variables on the right side of the equals sign.
The lists of variables must be of equal length. The value assignments
are performed list wise; the first right side value is assigned to the first
left hand variable, the second right to the second left, and so forth.

PUT VARS
db_varlist

There is an assumed right side list that is identical to the database or
table variable list. The referenced database or table variables must have
the same name as local variables.

Note that the PUT VARS takes local variables as the source and sets
database variables to be the same as the local variables. As these have
the same name, there is an opportunity for confusion if the variable
values were set inside the database block. e.g.

PROCESS REC EMPLOYEE
GET VARS SALARY
COMPUTE SALARY = SALARY * 1.1
PUT VARS SALARY
END PROCESS REC
Because this is in a record processing block, the database variable
SALARY is updated by the compute, not the local variable with the same
name. Then the PUT VARS would restore the original value of salary
because that is the current value in the local variable. If database
variables are updated inside a record block, the PUT VARS is
unnecessary.

PUT VARS ALL Any record or table variables with the same names as local variables
are updated.

Values of keyfields in records may not be updated. Values of keyfields of the index being
used on table rows may not be updated.

For example: The program retrieves data from the database and creates a new row on a
table, if one does not already exist for that employee in that position. The two forms of
PUT VARS are used, one to move a local variable to a row variable of the same name, the

SIR/XS Visual PQL 85

other to set a row variable of a different name. Note that the index variables are set by the
reference on the ROW IS and are not referenced by a PUT VARS.

RETRIEVAL TUPDATE
PROCESS CASES ALL
. GET VARS ID
. PROCESS RECORD EMPLOYEE
. GET VARS NAME CURRPOS SALARY CURRDATE
. NEW ROW IS OCCTAB INDEXED BY OCCINDEX (ID , CURRPOS)
. PUT VARS START_DATE = CURRDATE
. PUT VARS SALARY
. END ROW IS
. END PROCESS REC
END PROCESS CASE
END RETRIEVAL

SIR/XS Visual PQL 86

RECODE

RECODE [update_var =] recode_var
 [(value_list = recode_value) [...]]

The RECODE command computes a value according to the specifications and assigns the
value to a named variable. The computed value may be re-assigned to the original
variable or assigned to a different variable leaving the original value unchanged.

The values in the value list and the recode value are either constants or one of the value
keywords documented below. (Expressions and variable names are not allowed as
values.)

recode
variable

The variable or array element with the initial value to recode. If an
update variable is not specified, this variable is updated with the
recoded value.

update
variable

The variable or array element to receive the recoded value if the
original recode variable is not updated. The update variable must be a
data type compatible with the recode value.

recode value The values in the value list are converted to this single value. This
value must be the same type as the update variable. Specify the
keyword UNDEFINED to recode values to undefined.

value list Specify the list of original values to recode. Specify a value list for
each single recode value. Any value in the list is recoded into the
single recode value. If the value of the variable is not found in a value
list, the value is not recoded and is assigned unaltered to the update
variable. Specify a separate parenthesised recode value list for each
recode value. In the following examples: In the first, if RVAR is 1, 2 or
3, UVAR is recoded to 0. If RVAR has any other value, RVAR is
copied to UVAR. In the second example, UVAR is 0 if RVAR is 1, 2
or 3 and 1 (one) if RVAR is 4, 5 or 6 :

RECODE UVAR = RVAR(1,2,3 = 0)
RECODE UVAR = RVAR(1,2,3 = 0)(4,5,6 = 1)

You may use a number of keywords in the value list.

THRU Specifies an inclusive range of values. For example:

SIR/XS Visual PQL 87

RECODE UVAR = RVAR (1 THRU 3 = 0)(4 THRU 6 = 1)
The value lists can overlap avoiding the possibility that a value (such
as 3.5) falls between two value lists and is not recoded. The first match
determines the recode used. Multiple ranges and multiple values can be
specified in a value list. For example:
RECODE UVAR = RVAR

(1 THRU 3,7 THRU 99 = 0)(3 THRU 7 = 1)

LOWEST,LO Specifies the lowest possible value. For example:
RECODE UVAR = RVAR (LO THRU 3 = 0)(3 THRU 6 = 1)

HIGHEST,HI Specifies the highest possible value. For example:
RECODE UVAR = RVAR (LO THRU 3 = 0)(3 THRU HI = 1)

UNDEFINED Specifies an undefined value. For example:
RECODE UVAR = RVAR (UNDEFINED,LO THRU 3 = 0)(3 THRU 6 =
1)
UNDEFINED may also be used as the recode value. For example:
RECODE UVAR = RVAR (LO THRU 3 = 0)(3 THRU HI = UNDEFINED)

MISSING(0)
MISSING(1)
MISSING(2)
MISSING(3)

Specifies missing values. MISSING(0) is a synonym for UNDEFINED.
MISSING(1) refers to the first missing value, MISSING(2) to the
second, and MISSING(3) to the third. For example:
PROGRAM
INTEGER*1 RVAR
MISSING VALUES RVAR (7,8,9)
SET RVAR (9)
RECODE UVAR = RVAR
 (MISSING(1)=4)
 (MISSING(2)=5)
 (MISSING(3)=6)
WRITE UVAR
END PROGRAM

BLANK Specifies that the blank missing value is recoded. For example:
RECODE UVAR = RVAR (BLANK,7 THRU HI = 0)

ELSE Specifies a recode for all values not included in any previously defined
value list. If ELSE is specified, no other values may be specified in the
value list. This must be the last recode specification of a set. For
example:
RECODE UVAR = RVAR (1,2,3 = 1)(4,5,6 = 2)(ELSE = 0)

Mixed Data Type Recodes

A variable of one type may be recoded into a variable of another type. In the following
example, a string variable is recoded into a numeric variable.

PROGRAM
INTEGER*1 NUMVAR
STRING*1 STRVAR
SET STRVAR ('A')
RECODE NUMVAR = STRVAR('A' = 1)('B' = 2)(ELSE = 0)
WRITE STRVAR NUMVAR

SIR/XS Visual PQL 88

END PROGRAM

If the recode variable in a mixed data type recode has a value not referenced in a recode
value list, the update variable is set to undefined.

SIR/XS Visual PQL 89

SET
 SET varlist (value_list) ...

Assigns explicit values to variables and array elements during execution. Values in the
value list are assigned in list order to the variables in the variable list. If the value list is
shorter than the variable list, VisualPQL cycles through the value list until a value has
been assigned to each variable. If the value list is longer than the variable list, the excess
values are ignored.

Value Keywords for Undefined Values

The value list may contain value constants and the keywords BLANK MISSING NMISSING
SMISSING. BLANK assigns blanks to a variable. This can be used to assign a blank missing
value to a numeric variable. NMISSING assigns a numeric undefined value, SMISSING
assigns a string undefined value and MISSING assigns the appropriate type of undefined
value depending on the type of the variable being set. If MISSING is specified for an
undeclared variable, it is implicitly declared as type REAL.

Repeat Values

The asterisk is a symbol for repeating a value. The syntax is:

SET varlist (repeat_value * value [value_list])

In the following example, the first four variables are set to 2, the next three are set to 12
and the last three are set to 7,8 and 9 respectively.

SET VAR1 TO VAR10 (4*2,3*12,7,8,9)

Setting Array Elements

Specific array elements may be included in the variable list. All elements in an array may
be set by specifying the array name followed by the asterisk. Values in the value list are
assigned column wise by dimension. For example:

PROGRAM
INTEGER*1 ARRAY A (3,2) | declare two dimensional array A
SET A * (0) | set all elements to 0
SET A * (1,2,3,4,5,6) | set each element to unique value
WRITE A(1,1)
END PROGRAM

The second SET statement in the above example is equivalent to:

SIR/XS Visual PQL 90

SET A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) (1,2,3,4,5,6)

SIR/XS Visual PQL 91

EXTERNAL VARIABLE BLOCK

EXTERNAL VARIABLE BLOCK member[:V]
 [NOSAVE] [REPLACE] [PUBLIC] [VARMAP]
...
variable definitions ...
...
END EXTERNAL VARIABLE BLOCK

An EXTERNAL VARIABLE BLOCK declares a set of variables and arrays that may be shared
between routines. The external variable block contains variable declarations and
definitions and the PRESET command. No other commands are allowed in an external
variable block. The block is ended with the END EXTERNAL VARIABLE BLOCK command.

The external variable block is compiled separately (by running it) and is stored in its
compiled form in the specified member. This member is given the :V (for Variables)
suffix. This set of variables is made available to routines by specifying the INCLUDE
EXTERNAL VARIABLE BLOCK command within a routine.

The external variable block provides a common data area that can be used by a
VisualPQL program and its subroutines as an alternative to passing values between
subroutines with argument lists on the EXECUTE SUBROUTINE command. External
variables that are updated in one routine are available to all other routines that include the
external variable block during VisualPQL execution.

member The member name of the compiled variable definitions. It is given the
:V (for Variables) suffix if not specified. The member name can
contain complete procfile, family and password specifications.

NOSAVE Compiles the external variable block without saving it, simply
checking the code for errors.

REPLACE Gives permission to overwrite an existing member of the same name.
If such a member does not exist, the option has no effect.

PUBLIC Makes the compiled external variable block available to all users
without need for passwords. These users may reference the member,
but not modify or delete it.

VARMAP Lists the variables and their data types.

SIR/XS Visual PQL 92

INCLUDE EXTERNAL VARIABLE BLOCK
 INCLUDE EXTERNAL VARIABLE BLOCK member[:V]

Includes the variables as local variables in the routine. Do not declare variables from the
included block in the routine that includes the block.

member Names a member with the :V suffix that is a previously compiled and
stored set of variable declarations.

Use this command anywhere that variable declaration or definition commands are legal
(except within another EXTERNAL VARIABLE BLOCK). External variables that are updated
in one routine are accessible in other routines that have included the block. External
variables provide an alternative mechanism to passing values on the EXECUTE
SUBROUTINE command.

SIR/XS Visual PQL 93

DEFINE PROCEDURE VARIABLES

DEFINE PROCEDURE VARIABLES [{ INCLUDE | EXCLUDE } (varlist)]
 [NOARRAYS | ARRAYS]
 [NOEXTERNALS | EXTERNALS [
 (external_block_list)]]
 [NOSIMPLE | SIMPLE]

Controls the variables that are copied to the Procedure Table with the PERFORM PROCS
command. If this command is not used, by default all local simple variables from the
main routine are passed to the Procedure Table; arrays and external variables are not. If
arrays or external variables are needed for the procedures, this command must be used.
The options on the command are:

INCLUDE Specifies a list of variables included in the Procedure Table. This list
may include simple program variable names, array names and external
variable names. These variables must be available in the main program
or retrieval.

EXCLUDE Specifies a list of variables and arrays that are excluded from the
Procedure Table. All main routine program variables, external
variables and arrays not mentioned in this list become part of the
Procedure Table.

ARRAYS |
NOARRAYS

Specifies that all arrays declared in the main routine are included in the
Procedure Table. NOARRAYS is the default.

EXTERNALS |
NOEXTERNALS

Specifies that any external variables included with the INCLUDE
EXTERNAL VARIABLE BLOCK command in the main program or
retrieval are included in the Procedure Table. You may specify the
external variable blocks to include, in which case all variables in other,
unspecified external variable blocks are excluded from the Procedure
Table. NOEXTERNALS is the default.

SIMPLE |
NOSIMPLE

Specifies that all simple variables (not arrays, not external variables)
explicitly or implicitly declared in the main program or retrieval are
included in the Procedure Table. NOSIMPLE excludes all simple
variables from the Procedure Table. SIMPLE is the default.

SIR/XS Visual PQL 94

Control Flow
 There are a number of commands that deal with the flow of control within a program
depending on particular logical conditions.

The simple IF,IFNOT commands test a logical condition and execute one or more
commands immediately if the condition is satisfied.

The JUMP command transfers control to a specific point in the program identified by a
statement label.

Subprocedures are parts of a routine that can be executed from any point within that
routine, returning control to the next statement. Subprocedures are defined at the end of
the routine and share data with the routine.

Blocks

The major control structures are blocks and other commands occur in blocks that are
treated as a unit. Blocks are defined by commands that specify the type of block and are
bounded by an END command. Block structures are used for all database and table access.

Blocks consist of a command that starts the block and an end command that ends the
block (e.g. LOOP / END LOOP). Blocks may be nested within other blocks and an inner
block must be completely within an outer block. Blocks may not overlap. The block
structures are:

AFTER

A block of commands executed after all other processing. (There is no END AFTER; this
block is delimited by the end of the program or retrieval.)

BEGIN
A block of commands executed at this point.

FOR
A block of commands executed a specified number of times.

IFTHEN
A block of commands executed when a condition is true. IFNOTTHEN is a variant that
executes the block when a condition is false.

CASE IS, RECORD IS and ROW IS.
These blocks relate to one occurrence of a particular database record or row. Specify the

SIR/XS Visual PQL 95

key to identify the record on the command. The commands have variants using the
keywords NEW and OLD. These specify that the block is only executed if the record
created/already exists.

The JOURNAL RECORD IS creates a block that processes data from a journal entry that
matches the specified record type. This can only be used inside a PROCESS JOURNAL
block.

LOOP
A block of commands executed repeatedly until specifically ended (typically by an EXIT
LOOP).

PROCESS CASE, PROCESS RECORD and PROCESS ROW.

A block of commands executed once for each occurrence of a record in a database or row
in a table.

PROCESS JOURNAL specifies a block of commands that are executed once for each
occurrence of matching records on a database journal.

UNTIL
A block of commands executed until a specified condition is met.

WHILE
A block of commands executed as long as a specified condition is met.

The EXIT and NEXT commands further control processing within the block. EXIT passes
control to the first command after the end of the block; NEXT goes to the next iteration of
a looping block.

SIR/XS Visual PQL 96

Logical Conditions

 A logical condition can be composed of a number of elements. The basic element is a
logical expression that uses a Relational Operator to specify a comparison between two
values. This returns either true or false. The values must be of the same type, either string
or numeric. Constants, variables, functions and expressions using arithmetic, functions
and other computations may be compared. When expressions are compared, all string and
arithmetic operations are completed before the relational operations. When strings are
compared, they are case sensitive (upper or lower) and tests for greater than/less than use
the standard sort sequence: 'B' is greater than 'A' and 'BOY' is greater than 'BOX'. The
relational operators are:

EQ or = True when values are equal.
NE or >< True when values are not equal.
GT or > True when the first value is greater than the second value.
GE or >= or
=>

True when first value is greater than or equal to the second value.

LT or < True when the first value is less than the second value.
LE or <= or
=<

True when first value is less than or equal to the second value.

The logical condition can also contain the NOT operator:

NOT NOT operates on a logical expression and negates its logical value. A
true (non-zero, non-missing) expression is made false and a false
expression is made true. NOT operates on the expression that follows up
through the next relational operator or the next un-matched right
parenthesis. NOT is evaluated and resolved after the entire expression to
which it applies has been resolved and before other logical operators at
the same level of nesting are evaluated. For example:
IF(NOT 1 GT 2) WRITE 'TRUE'

SIR/XS Visual PQL 97

Compound Conditions

Compound conditions test two logical expressions and resolve to either true or false. The
relationship between the two expressions is specified using the logical operators:

AND Intersection. True if both expressions are true.
OR Inclusive Union. True if either expression is true.
XOR Exclusive Union. True if one but not both expressions are true.

These logical expressions resolve to either true or false. For example,

IF(1 LT 2 AND 'A' LT 'B') WRITE 'Both statements are true'

Compound Logical Operations on the same variable.

When the same variable is repeatedly tested for different values, the variable name (and
test if that repeats) do not have to be repeated. For example:

IF(ID EQ 1 OR 3 OR 12 OR 16) WRITE ID

The phrase 'ID EQ' is assumed to follow each 'OR' making this equivalent to:

IF(ID EQ 1 OR ID EQ 3 OR ID EQ 12 OR ID EQ 16) WRITE ID

The following two statements are equivalent:

IF (ID EQ 1 OR ID GT 10) WRITE 'TRUE'
IF (ID EQ 1 OR GT 10) WRITE 'TRUE'

The following two statements are also equivalent:

IF (ID EQ A OR B AND NOT C) WRITE 'TRUE'
IF (ID EQ A OR ID EQ B AND NOT ID EQ C) WRITE 'TRUE'

Precedence

 Parentheses may be used to establish precedence, in which case more deeply nested
operations are resolved earlier. Within any expression, the various elements are resolved
in the order listed below. Elements at an equal level of precedence are resolved left to
right.

SIR/XS Visual PQL 98

1. parenthesised expressions
2. functions
3. string concatenation
4. exponentiation (**)
5. multiplication and division (* and /)
6. addition and subtraction (+ and -)
7. relational operators EQ, NE, GT, GE, LT, LE
8. logical operator NOT
9. compound logical operators AND, OR, XOR

Logical Values

Expressions that contain relational or logical operators resolve into true or false logical
values equivalent to a 1 (one) or a 0 (zero). It is valid to compute a numeric variable to
hold the result of a logical expression and to use logical expressions as arguments in
functions such as SUM.

IF commands can directly test expressions that resolve to numeric values. Zero tests to
false, missing tests to false and all other values test to true. In the following example,
LOGICVAR contains the value 0 (zero) if the value of A does not equal the value of B, or 1
if it does:

COMPUTE LOGICVAR = (A EQ B)
IF (LOGICVAR) WRITE 'TRUE'
Because of the simple syntax for multiple tests on a single variable, compound conditions
on logical variables must be specified with care. Consider the following two statements,

IF (LOGVAR1 AND AGE GT 21) WRITE 'TRUE'
IF (AGE GT 21 AND LOGVAR1) WRITE 'TRUE'

The first statement test LOGVAR1 to be 1 (true) and AGE greater than 21. However the
second statement is expanded to:

IF (AGE GT 21 AND AGE GT LOGVAR1) WRITE 'TRUE'

SIR/XS Visual PQL 99

IF, IFNOT

IF (logical expression) command(s)
IFNOT (logical expression) command(s)

IF executes the specified command or commands when the logical expression is true.
When the logical expression is false, program execution continues with the next
executable command. IFNOT executes the specified command or commands when the
logical expression is false. When the logical expression is true, program execution
continues with the next executable command.

Any VisualPQL command may be specified as the executable result of an IF/IFNOT
except:

• other logical test commands
• data definition commands
• block definition commands
• compiler commands

Separate multiple commands with semi-colons (;). For example:

IF (1 EQ 1) SET X(1); WRITE 'OK'
IF (X EQ 1) SET X(0);
 WRITE 'OK 2';
 EXIT RETRIEVAL
PROCESS REC EMPLOYEE
. IFNOT(SALARY GE 2000) NEXT REC
. WRITE NAME SALARY
END REC

The example goes to the next record when salary is not greater than or equal to 2000 and
also when salary is missing (because the expression is treated as false).

SIR/XS Visual PQL 100

JUMP

JUMP statement label
JUMP (statement label , statement label, ...) variable

JUMP transfers control to the point in the program identified by the specified statement
label. Execution continues serially from that point. It is possible to jump to a statement
label or to fall through to it from the normal flow of control. A JUMP command must be at
an equal or higher level of nesting and within the same nested set as the statement label
that it references. JUMP can jump out of a block, but not into the middle of a more deeply
nested block. JUMP can not jump out of or into a SUBROUTINE or SUBPROCEDURE.

Specify a statement labels as the first element on a line. A statement label is a name
followed by a colon (:). When referenced in the JUMP command, do not specify the colon.
If you need to use a non-standard name (enclosed in curly brackets {}) as a label in PQL,
there is a possible conflict with the syntax for command labels used to control command
processing. Avoid this conflict by indenting the label and specifying a full stop in column
1.

The first form of JUMP specifies a single statement label and transfers control to the
command after the label.

The second form of the command, the computed JUMP, transfers control to the nth label in
a specified list of labels, where the numeric variable contains the value N.

SIR/XS Visual PQL 101

AFTER

 AFTER PROGRAM or AFTER RETRIEVAL

Specifies a block of commands executed when the program or retrieval is complete. The
block is typically used to print report ending information and for actions that are taken
just before ending the program.

Table, case or record processing commands are not allowed. Reference may not be made
to any data in the database or table files. Local variables are available for output.

This command is typically used with the Full Report Procedure.

AFTER PROGRAM is identical to AFTER RETRIEVAL, except that it is used in programs
rather than retrievals.

SIR/XS Visual PQL 102

BEGIN
 BEGIN

Specifies the beginning of a block of commands. The commands in a BEGIN block are
executed when control reaches this point.

END BEGIN
Delimits the BEGIN block.

EXIT BEGIN
Transfers program control to the statement following the END BEGIN command. It is
usually used conditionally to terminate processing of the block.

BEGIN can be used to anywhere in a program to group a set of commands that have some
common purpose. For example, initialisation at the start of the program.

PROGRAM
BEGIN
. COMPUTE TOTAL = 0
. other initialisation commands
END BEGIN
PROCESS ROWS SCHOOLS.STUDENTS
. COMPUTE TOTAL = TOTAL + 1
. other commands performed for every row
END ROW
END PROGRAM

BEGIN is often used to create a better structure in a program with complex logical
conditions and to avoid the use of JUMP or very complex IFTHEN / ELSEIF constructs.
For example:

BEGIN
. IF (logical condition) EXIT BEGIN
. visualpql code
. IF (logical condition) EXIT BEGIN
. IF (logical condition) EXIT BEGIN
. visualpql code
END BEGIN

SIR/XS Visual PQL 103

EXIT
 EXIT [blocktype]
EXIT blocktype stops execution of the block at that point and transfers control to the first
command following the END blocktype command. An EXIT can be used in any block. If
the blocktype is specified, the command exits the innermost block of that type. If the
blocktype is not specified, the command exits the innermost block. It is good practice to
specify blocktype. An EXIT command may be specified in the following blocks:

EXIT BEGIN Exits the current BEGIN block.
EXIT CASE Exits the current case processing block.
EXIT FOR Exits the current FOR block.
EXIT IF Exits the current IFTHEN or IFNOTTHEN block.
EXIT JOURNAL Exits the current JOURNAL RECORD IS block.
EXIT LOOP Exits the current LOOP block.
EXIT PROCESS
JOURNAL

Exits the current PROCESS JOURNAL loop.

EXIT PROCESS
RECORD

Exits the current PROCESS RECORD loop.

EXIT PROCESS
ROW

Exits the current PROCESS ROW loop.

EXIT PROGRAM Terminates the PROGRAM after executing any commands in the AFTER
PROGRAM block. STOP is a synonym for EXIT PROGRAM.

EXIT RECORD Exits the current record processing block.
EXIT
RETRIEVAL

Terminates the RETRIEVAL after executing any commands in the AFTER
RETRIEVAL block. STOP is a synonym for EXIT RETRIEVAL.

EXIT ROW Exits the current row processing block.
EXIT UNTIL Exits the current UNTIL block.
EXIT WHILE Exits the current WHILE block.

SIR/XS Visual PQL 104

FOR
 FOR control_var = startvalue, endvalue [,increment]

The FOR command specifies the number of times the commands in a FOR block are
executed. FOR assigns a new value to the control variable each time the block is repeated.

control_var The control variable must be a numeric variable and may not be an
array element. It is incremented by the value of increment during each
pass through the block. When the value of this variable exceeds the
endvalue, the block is exited and control is transferred to the first
statement following END FOR. If the control variable is not explicitly
declared, it is declared implicitly as a REAL*8 local variable.

startvalue The control variable is set to this value when the block is first
executed. The value may be a program variable, array element
reference, expression or a numeric constant.

endvalue The end value determines the final pass through the FOR block. The
value may be a program variable, array element reference, expression
or a numeric constant.

increment The value by which the control variable is incremented during each
pass through the block. The value may be a program variable, array
element reference, expression or a numeric constant. The default
increment value is 1 (one).

END FOR Delimits the FOR block.
EXIT FOR Terminates processing of the FOR block and transfers program control

to the first statement following END FOR. This command is usually
executed conditionally with an IF command or from within a
conditionally executed block of commands.

NEXT FOR Terminates processing of the current pass through the FOR block and
passes control to the start of the next FOR loop after incrementing and
checking the control variable.

The following sequence is executed in a FOR block:

• The control variable is set equal to the starting value, all commands in the block
are executed, then the increment is added to the control variable.

• If the control variable is greater than the end value or if the control variable
becomes a missing value, execution of the block is terminated. Otherwise the
block is executed again.

• If either start value or end value is missing, the FOR block is skipped.

SIR/XS Visual PQL 105

• If the control variable is a database variable (the FOR block is within a record or
case block), the database variable is updated on each pass through the block.

• When the increment is positive, the FOR block is not performed when the start
value is larger than the end value. When increment is negative the FOR block is
not performed when the start value is smaller than the end value.

SIR/XS Visual PQL 106

IFTHEN

IFTHEN (logical_expression)
IFNOTTHEN (logical_expression)

The IFTHEN command defines a block of commands that are executed conditionally.

In its simplest form, IFTHEN defines a block of commands that are executed when a
logical expression is true. An IFNOTTHEN block of commands is executed when the
logical expression is false. Any command may be included within an IFTHEN or
IFNOTTHEN block, including other complete blocks of commands and other logical test
commands.

Other conditional blocks within the condition, can be defined with the ELSE , ELSEIF,
and ELSEIFNOT commands. Each conditional block is terminated with another ELSEIF,
ELSE or the END IF. An IFTHEN block may contain multiple ELSEIF and ELSEIFNOT
blocks. It may only contain one ELSE block.

END IF Delimits the IFTHEN block.
EXIT IF Directs the flow of the program to the statement following the END IF

of the block in which it appears.
ELSE Specifies a block of commands that are executed when no other

commands are executed in the IFTHEN block. The block of commands
is delimited by the END IF.

ELSEIF
ELSEIFNOT

Specifies a block of commands that are executed when the conditions
specified on the IFTHEN and any other previous ELSEIF commands are
not satisfied and the condition specified on this command is satisfied.
The block of commands is delimited by a further ELSEIF, ELSE or the
END IF.

IFTHEN (logical expression)
. commands executed when above expression is TRUE
. ELSEIF (logical expression)
. commands executed when above expression is TRUE
. ELSEIFNOT (logical expression)
. commands executed when above expression is FALSE
. ELSE
. commands executed when no other blocks are executed
END IF

SIR/XS Visual PQL 107

LOOP
 LOOP

LOOP repeatedly executes a block of commands. By definition, a LOOP block is an infinite
loop and a command such as EXIT or JUMP must be used to terminate looping. The
compiler does not check for the existence of these commands within a LOOP.

END LOOP Delimits the LOOP block.
EXIT LOOP Terminates looping, directing program execution to the statement

following the END LOOP. This command is frequently executed
conditionally, as with an IF command, to terminate the looping.

NEXT LOOP Terminates processing of the current pass through the block and passes
control to the next iteration of the current LOOP block (control is passed
to the statement following LOOP).

SIR/XS Visual PQL 108

NEXT
 NEXT [blocktype]

Some blocks (e.g. WHILE) are looping structures and execute repeatedly until some
controlling condition is met. In looping blocks, the NEXT blocktype command transfers
control to the first command in the block at the next iteration.

If the blocktype is specified, the command transfers control to the next iteration of the
innermost block of that type. If blocktype is not specified, control is transferred to the
next iteration of the innermost looping block. It is good practice to specify blocktype.
NEXT may be specified in the following looping blocks:

NEXT CASE Transfers control to the next iteration of PROCESS CASES if another
case exists.

NEXT FOR Transfers control to the next iteration of the FOR, if the end condition
specified on the FOR has not yet been reached.

NEXT LOOP Transfers control to the next iteration of the LOOP.
NEXT REC Transfers control to the next iteration of PROCESS RECORDS if another

record exists.
NEXT ROW Transfers control to the next iteration of PROCESS ROWS if another row

exists.
NEXT UNTIL Transfers control to the next iteration of the UNTIL, if the end condition

specified on the UNTIL has not yet been reached.
NEXT WHILE Transfers control to the next iteration of the WHILE, if the end condition

specified on the WHILE has not yet been reached.

For example:

PROCESS REC EMPLOYEE
. IF (GENDER = 1) NEXT PROCESS REC
 ...
END PROCESS REC

SIR/XS Visual PQL 109

UNTIL
 UNTIL (logical expression)

UNTIL repeatedly executes a block of commands until the logical expression becomes
true. When the expression becomes true, the block is exited and program control is
transferred to the statement following the END UNTIL command.

The condition of the logical expression is tested at the start of each pass through the
UNTIL block. If the condition is initially true, the block is skipped entirely.

END UNTIL Delimits the UNTIL block
NEXT UNTIL Terminates the current pass through the block and transfers control to

the next iteration of the UNTIL command. This command is usually
executed conditionally, as the result of a logical test (e.g. with the IF
command). This command may only be used within an UNTIL block.

EXIT UNTIL Terminates processing of the UNTIL block and transfers program
control to the statement following the END UNTIL. This command is
usually executed conditionally, as the result of a logical test (e.g. with
the IF command). This command may only be used within an UNTIL
block.

SIR/XS Visual PQL 110

WAIT

WAIT num_exp

Pauses execution of this program for the specified number of tenths of a second.

PROCESS RECORD PATIENT LOCK = 4 | get the patient record
. LOOP
. IF(SYSTEM(36) = 1) EXIT LOOP | exit if we get the record
. WRITE 'Waiting for locked record'
. WAIT 5 | wait half a second
. RETRY RECORD | try to get the record
. END LOOP
...
END PROCESS RECORD

SIR/XS Visual PQL 111

WHILE
 WHILE (logical expression)

WHILE repeatedly executes a block of commands while the expression is true. When the
expression becomes false, execution of the block is terminated and program control is
transferred to the statement following the END WHILE. The condition of the expression is
tested at the start of each pass through the WHILE block. If the condition is initially false,
the block is skipped entirely.

END WHILE Delimits the WHILE block
NEXT WHILE Terminates the processing of the current pass through the block and

passes control to the next iteration of the block. This command is
usually executed conditionally, as the result of a logical test (e.g. with
the IF command).

EXIT WHILE Terminates processing of the WHILE block and transfers program
control to the statement following the END WHILE. This command is
usually executed conditionally, as the result of a logical test (e.g. with
the IF command).

SIR/XS Visual PQL 112

SUBPROCEDURE
 SUBPROCEDURE name [NOAUTOCASE]

A subprocedure is a named, structurally complete, block of commands that may be
executed from any point within a routine with the EXECUTE SUBPROCEDURE command.
Subprocedure names must be unique within the routine. A subprocedure is compiled
with, and belongs to, the routine it is defined in. A subprocedure shares variables with the
routine and other subprocedures and has access to all variables available to the routine in
which it is defined. Declare any variables used by the routine before they are referenced.
(i.e. do not declare new variables in the subprocedure that are referenced by the routine.)

Define subprocedures at the end of the routine ahead of any VisualPQL Procedures or an
AFTER RETRIEVAL block. There is an implicit STOP (or RETURN if the routine is a
subroutine) just before the first subprocedure.

The SUBPROCEDURE command begins a subprocedure definition. The subprocedure
definition ends with the END SUBPROCEDURE command.

 If you define a subprocedure with the name RT_ERROR, this procedure is given control if
a run time error occurs. It is then this subprocedure's responsibility to take any
appropriate action necessary. If the subprocedure does not exit the routine, control is
passed back to the next command following the command that caused the run time error.

NOAUTOCASE Specifies that the subprocedure is called from within a CASE block,
allowing specification of a RECORD block within the subprocedure
and/or references to CIR variables. If the subprocedure is executed
outside a CASE block, the execution of a RECORD block causes an error
and the main routine terminates. Any references to variables with
names matching CIR variable names reference CIR variables. If the
subprocedure is executed outside a CASE block, references to CIR
variables return undefined values.

References to other variables in the subprocedure are to local variables,
unless within a RECORD block physically specified in the subprocedure
itself, even if the subprocedure is executed from within a record block.
However, if the subprocedure is executed from within a record block,
this alters the behaviour of certain VisualPQL functions that allow an
expression as a variable name, such as VARGET and VARPUT. Because
these functions resolve their variable references at execution time and
are checked against any CIR variables, then any active record variables
ahead of any local variables, execution of these functions from within a

SIR/XS Visual PQL 113

record block references any matching record variable regardless as to
whether the functions are in a subprocedure.

END SUBPROCEDURE

END SUBPROCEDURE ends the block of subprocedure code. Control is passed back to the
first command following the EXECUTE SUBPROCEDURE command that invoked the
subprocedure.

EXIT SUBPROCEDURE

EXIT SUBPROCEDURE exits the subprocedure and control is passed to the first statement
following the EXECUTE SUBPROCEDURE command that invoked the subprocedure.

SIR/XS Visual PQL 114

EXECUTE SUBPROCEDURE
 EXECUTE SUBPROCEDURE name

Transfers control to the first line of code in the named subprocedure. When the
subprocedure is exited, control returns to the first statement following the EXECUTE
SUBPROCEDURE. This command may appear anywhere in a routine including within a
subprocedure.

Subprocedure Example:

PROGRAM
TIME NOON NOWTIME ('HHiMM') | declare time variables
COMPUTE NOON = '12:00' | set the value of midday
COMPUTE NOWTIME = NOW(0) | get the current time
IFTHEN (NOWTIME LT NOON)
. EXECUTE SUBPROCEDURE MORNING | execute MORNING
. ELSE
. EXECUTE SUBPROCEDURE AFTERN | execute AFTERN
ENDIF
SUBPROCEDURE MORNING
. WRITE 'Good Morning'
END SUBPROCEDURE
SUBPROCEDURE AFTERN
. WRITE 'Good Afternoon'
END SUBPROCEDURE
END PROGRAM

SIR/XS Visual PQL 115

Reading and Writing Files
 There are VisualPQL commands that read and write files.

Programs can read from and write to named files. These may be text or binary files and
output files can be newly created or opened in append mode, which adds to the end of
any existing file of the same name.

An interactive program can READ without naming a file. This displays a text box for the
user to enter data. If a WRITE does not specify a file, output is to the default output file. In
an interactive session, the default output file is the scrolled output window, but can be
assigned to a file. Batch runs always have output assigned to a file.

The OPEN command is optional. If a file is referenced on a READ command and the longest
record in that file is 80 characters or less, it is automatically OPENed. If a file is referenced
on a WRITE command, it is automatically OPENed with the same record length as the
current default output. By default, this is 120 characters. To open a file with any other
characteristics, use the OPEN command.

By default, output files are new files. Use the APPEND option on the OPEN command to
append to existing files of the same name.

Filenames

Files have an external name that may be fully qualified with path or subdirectory
specifications. Specify filenames in quotes if they contain characters such as slash,
comma or blank that have meaning in VisualPQL. For example:

READ ('D:\SIRDB\EMPDB\DATA\REC1.DAT') DATALINE (A20)

When VisualPQL accesses a file, it passes the name directly to the operating system
without checking it.

SIR/XS uses a short, internal, name or Attribute that is mapped to the long, fully qualified
filename. If a filename is a valid SIR name not in quotes, it is checked against the current
set of attributes. If a match is found, the full filename that the attribute refers to is used.
Temporary attributes with internal names are automatically created for long names and
specific, named attributes are created by various VisualPQL and general SIR/XS
commands including OPEN and SET ATTRIBUTE.

SIR/XS Visual PQL 116

Binary Files

Normally files read or written by explicit reads and writes in VisualPQL are text files;
that is they contain readable characters together with end of record characters and can be
viewed with a text editor. VisualPQL can also read and write binary files using a
combination of the BINARY keyword on the OPEN command and the Hex, IB and RB
formats on the READ and WRITE commands. Integers and real numbers in a binary file are
in internal computer format and a binary file does not have end of record markers.
Reading and writing binary files means that exactly the number of bytes specified in the
read or write variable list are transferred between the file and the program. It is the
programmer's responsibility to ensure that file and variable specifications match.

There are three formats that specify that binary data is being transferred. The HEXw
format is for generic strings of binary data and these are not altered in any way by the
read/write process. The w specifies the length of field and can be up to 4094. Declare the
variable being used as a normal VisualPQL string. If strings are written as text using the
A format as opposed to Hex format, if the string contains a hex character '00', it is taken
as the end of any text output line and the line is truncated to that point.
The IBw and RBw formats allow the transfer of numeric data. IB is for Integers in Binary
format and RB is for Reals in Binary format. The w specifies the length of field and is 1,2
or 4 for integers, 4 or 8 for reals. For example, the following program copies any file:

program
integer*1 ibyte1
string*256 a256
string*250 oldfl newfl
real*8 cnt fsize
cnt=0
c ** Change these names to required filenames
compute oldfl = 'splash.bmp'
compute newfl = 'copy.bmp'
compute fsize=filestat(oldfl,10)
open inf dsnvar=oldfl lrecl=256 binary
open outf dsnvar=newfl lrecl=256 binary write
loop
cnt=cnt+256
ifthen(fsize-cnt ge 256)
. read (inf,error=end) a256(HEX256)
. write (outf) a256(HEX256)
else
c Less than 256 bytes left so go 1 byte at a time
. loop
. read(inf, err=end)ibyte1(ib1)
. write(outf)ibyte1(ib1)
. end loop
endif
pool
end:
end program

SIR/XS Visual PQL 117

OPEN

OPEN fileid
 [BINARY]
 [DELETE]
 [DSN = 'file_name' | DSNVAR = str_varname |
 | LDIVAR = str_varname]
 [DYNAMIC]
 [ERROR = statement_label]
 [IOSTAT = num_varname]
 [LRECL = max_rec_length]
 [MEMBER [REPLACE]]
 [READ | WRITE [APPEND]]

Opens the specified file or member for READ or WRITE access, READ is the default. The
READ, WRITE and CLOSE commands may use an opened file.

Files are accessed by the READ and WRITE commands.

fileid The internal name or attribute of the file is the name referenced by any
READ, WRITE or CLOSE command. If the external filename is exactly
the same as the attribute name and the file is in the default directory,
the DSN may be omitted. Otherwise the DSN clause must be specified.

If a member is being opened, this must be the member name. If the
family name is not specified, the current default family name is used. If
the procfile name is not specified, the current default procfile is used.

APPEND Specifies that the opened file is added to the end of any existing file
with the same name. If the file does not exist, it is just created.

BINARY Specifies that the opened file is treated as a binary file. Data is read or
written exactly as given and no translation to text takes place. There
are no end of line or end or record markers.

To illustrate the differences between writing text and binary, suppose a
write statement references an integer with a value of say 100. In the
text file (with no format), this results in the characters 100 (in
hexadecimal a character 0 is 30 and character 1 is 31 so this is 313030)
but in a binary write (with format IB4) of an integer*4, this results in
the hexadecimal 4 bytes value 64000000 (This is true on a PC but
different byte ordering applies on other machines that gives different
results). Similarly, if a binary file is read, the internal fields on the read

SIR/XS Visual PQL 118

must match the type of data being read. You must know what you are
doing to use binary files!

DELETE Specifies that the opened file (or member) is deleted after it is closed.
Files are closed when a CLOSE command is executed or at termination
of the program. The CLOSE command also has a delete option.

DSN | DSNVAR
| LDIVAR

DSN specifies a fully qualified external filename enclosed in single
quotes (').
DSNVAR specifies the name of a string variable that contains the fully
qualified filename. A value of asterisk (*) specifies that the default
input or output files are used that may be useful during program
development and debugging.
LDIVAR specifies the name of a string variable that contains the
attribute name of the file. A value of asterisk (*) specifies that the
default input or output files are used that may be useful during program
development and debugging.

DYNAMIC Specifies that file attribute entry is not stored with the subroutine
object code.

ERROR Specifies a statement label where control is transferred if an error
occurs in opening the file. If the ERROR clause is not specified and an
error in opening the file occurs, an error message is displayed and
program execution terminates.

IOSTAT Specifies a numeric variable to hold a return code. If IOSTAT is
specified and an error occurs, a value is assigned to the specified
variable and control transfers to the ERROR clause statement label. If
there is no ERROR clause, execution continues with the next statement.
If IOSTAT is not specified and an error occurs a message is printed and
the program is terminated. The codes for normal files are:

 0 Successful Open
- 5 File locked (in use)
- 6 File not found
- 8 Access problem
- 9 Miscellaneous problems

The codes that apply to members are standard error
message numbers and are:
439 Cannot form member name.
440 Member must be type text.
441 Family password mismatch.
442 Member password mismatch.
443 Cannot open procedure file.
444 Family not found.
445 Member found but replace mode not specified.
446 Member not found.
447 Cannot open scratch file to process member.
449 Procedure file already open in this retrieval.

LRECL Specifies the longest record length (in bytes) on the file being opened.

SIR/XS Visual PQL 119

If LRECL is not specified, 80 bytes for READ and the current default
output width (that itself defaults to 120) for WRITE are used. If a record
longer than the specified length is encountered, the record is truncated
and a warning message is issued.

MEMBER Specifies that the fileid is a procedure file member. Once opened, a
member can be read from or written to. Only one member of the
procedure file may be open at any given time. If a member is not
explicitly closed with the CLOSE command, it is closed at the
termination of the program.

REPLACE REPLACE gives permission to overwrite an existing member. If the
specified member does not exist, this keyword has no effect. If an
attempt is made to write to an existing member and this keyword is not
specified, the member is not overwritten and an advisory message is
issued. A family cannot be created with an OPEN command.

READ | WRITE READ, the default, opens the file or member for read access.
WRITE opens the specified file or member for write access.

SIR/XS Visual PQL 120

CLOSE
 CLOSE fileid [DELETE]

Closes the specified file. CLOSE may be used to close a file early in a program in order to
reopen it later during the same program. Closing and then opening a file allows the
program to re-read the file from the beginning.

DELETE The file or member is deleted when it is closed.

SIR/XS Visual PQL 121

DELETE PROCEDURE FILE MEMBER
 DELETE PROCEDURE FILE MEMBER name
Removes the named procedure file member at execution time. The name may be a string
constant, a string variable or [string_expression]. The type must be specified. Any
member type may be deleted. (The delete option on the OPEN/CLOSE commands can only
be used with text members.)

The format of the name is the normal member name format i.e.:

[procfile.][family[/pword].]member[/pword]:type

SIR/XS Visual PQL 122

READ

Interactive READ

READ ['prompt_text'] I/O_list
 ['prompt_text'] I/O_list ...

File READ

READ (fileid, [ERROR=label] [IOSTAT=VARNAME] [MEMBER]) I/O_list

The interactive READ reads input from the user, popping up a box with the specified
prompt (a question mark ? is displayed if no prompt text), space for data entry and
response buttons that allows entry of data. The program waits for the user to enter data.
Regardless of the number of fields on the input specification, a single box is popped. (If
multiple boxes are wanted, specify multiple prompts and i/o lists.) Input fields are
delimited by spaces. The user must enclose a string input field in quotes if it contains
spaces.
It is recommended that this interactive read is not used. Use DISPLAY TEXTBOX instead.

The file READ reads from a file. Records are read from first to last sequentially, a new
record being read each time a READ of the file is executed.

Input is read according to the i/o list and values read from the input are assigned to
program variables.

If the file is a normal text file then fields from the file are translated into appropriate
internal formats. Each read reads a single record.

If the file is a binary file, input fields must match the type of the fields on the file in order
to process data correctly and just those fields specified are read.

If explicit OPEN and CLOSE commands are not used, the first time the READ is executed the
file is opened and program termination closes the file. If the file cannot be opened
successfully, an error message is displayed and the program stops executing.

A READ command is not a block control statement and simply executes without looping.
In order to read through a complete file, it is necessary to enclose the READ in a looping
block, typically a WHILE (IOSTAT =0).

SIR/XS Visual PQL 123

An IOSTAT = varname may be specified as a return code. An ERROR = label may be
specified that is gone to when an error condition is encountered on the READ. Return
codes with any value other than zero are errors. When the program reaches end of file,
this results in an error return code (-4) and programs normally treat any non-zero return
code as end of file.

PROGRAM
STRING * 80 LINE
INTEGER*1 STAT
STAT = 0
WHILE (STAT = 0)
. READ(INPUT.TXT,IOSTAT = STAT)LINE(A80)
. WRITE LINE(A80) | display what we read
END WHILE
END PROGRAM

Options

'prompt text' The text displayed on the screen to request input. Specifying prompt
text or omitting a filename indicates that interactive input is expected.
The text box is displayed with a single line for input. The maximum
input size is 80 characters. Multiple fields may be read at once
depending on the format specification. A second prompt may be
specified on the single command that is essentially identical to
repeating the command.

fileid Specifies the name of the input file or member. This may be a filename
or an attribute name.

 ERROR Specifies a statement label in the program. Control is passed to that
point if an error or end-of-file condition occurs.

 IOSTAT Specifies an integer variable for a return code. Return codes are:
0 Success
-1 File not Open
-4 End of File

 MEMBER Specifies that the file being read is a member from the procedure file.
This is unnecessary if already specified on an explicit OPEN.

SIR/XS Visual PQL 124

I/O List - Input Specification

 I/O lists contain variable names and their formats. The formats can be fixed-field, free-
field or pictures, and can contain positional specifiers.

Fixed-field formats

Iw Integer, w digits wide

Fw.d Real single precision, w digits wide, d decimal places

Ew.d Real, scientific notation

Dw.d Real double precision, w digits wide, d decimal places

Aw String, w characters wide

Bw String, characters reversed (backwards)

DATE 'format' Date in specified date format.

TIME 'format' Time in specified time format.

Free-field formats

* Any free-field variable

I* Integer

F* Real

E* Real, scientific notation

D* Real, double precision

A* String

Positional specifiers

nX Skip the next n columns.

nT Move (Tab) to column n before reading the next variable. Column n can be to the
left or right of the current position.

SIR/XS Visual PQL 125

Binary Formats

 HEXw Binary string, w digits(up to 4094)

IBw Binary integer, w digits(1,2 or 4)

RBw Binary real, w digits (4 or 8)

Delimited Input

The free field input formats (represented by *) must establish what represents a field on
the input. If the field is in quotes, then the string in the quotes is used (start and end
quotes stripped off). In unquoted strings, blanks, tabs and commas are delimiters.
Multiple blanks or tabs are treated as a single delimiter. Multiple commas are taken as
multiple fields i.e. each comma corresponds to one field on the read input format. Two
commas together in the record result in blank input to that field.

Picture clauses

Instead of a format, a picture clause enclosed in quotes can be specified. Aside from the
following specific picture characters, any other characters that appear in the picture must
appear "as is" in the input record. The input field must conform to the specified picture:

d any digit

s digit, decimal point, plus or minus

a any letter

u any uppercase letter

l any lowercase letter

c any character

SIR/XS Visual PQL 126

REREAD
 REREAD (fileid, [ERROR= label/] [IOSTAT= varname/]) I/O_list

Rereads the last record read from the specified sequential file. The syntax for the
command is the same as the READ command.

The REREAD may specify a different input specification from the previous READ. For
example:

PROGRAM
STRING*80 TEXTLINE
STRING*20 STUDENT
INTEGER*1 RECTYPE NAME SEX ETH_CODE RANK
READ (DATAFILE.DAT) RECTYPE(I1) NAME(A20) 3X
 SEX(I1) ETH_CODE(I1) RANK(I1)
IFTHEN (RECTYPE = 2)
. REREAD (DATAFILE.DAT) RECTYPE (I1)TEXTLINE(A80)
ENDIF
...pql commands
END PROGRAM

SIR/XS Visual PQL 127

WRITE

Default WRITE

WRITE I/O_List

File/Member WRITE

WRITE (fileid [ERROR=label] [IOSTAT=varname] [MEMBER [REPLACE]]
[NOEOL]) I/O_List

The default WRITE writes output to the scrolled output or assigned output file. There is no
paging on interactive output. Pages are maintained when standard output is assigned to a
file.

The text file or member WRITE creates a new file, appends to an existing file (with the
APPEND option on the OPEN) or creates a new member and writes records to the end of the
specified file each time the WRITE command is executed. Output is formatted according to
the i/o list and assigns values from the program variables to the output.

The binary file WRITE creates a new file or appends to an existing file (with the APPEND
option on the OPEN) and writes fields to the end of the specified file each time the WRITE
command is executed. The exact values from the program variables are written to the
output in the internal format of those variables if they are strings or if the binary formats
are used: IB1, IB2 or IB4, IR4 or IR8, (Use IB4 for dates or times).

fileid Specifies the name of the output file or member. This may be an
attribute or filename.

The filename STDOUT can be used when options such as NOEOL are
required but output is still directed to the default output.

The filename CGI specifies that, if the program is being used in CGI
mode from a webserver, output is returned to the server (which means
that it appears on the user's web page). If the program is run in normal
mode, i.e. not from a webserver, then a file called sircgi.htm is
created. The NOEOL option can be used with CGI

ERROR = label Specifies a statement label in the program. Control is passed to this
label if an error condition occurs on the command. If the ERROR or

SIR/XS Visual PQL 128

IOSTAT clause is not specified and an error occurs, an error message is
written and the program is terminated.

IOSTAT Specifies the name of a numeric variable that returns any error code.
The value zero indicates no error, a negative number indicates the type
of error that occurred.

 MEMBER Specifies that the file being written is a member from the procedure
file. This is unnecessary if already specified on the explicit OPEN.

 REPLACE Gives permission to overwrite an existing member.
NOEOL Specifies that the output is written without an end of line. The next

WRITE simply continues putting data to the file and no new record is
created. This can be used to build a complete file in a particular format
without any end of line characters or can be used interspersed with
WRITE commands that do create end of line.

SIR/XS Visual PQL 129

I/O List - Output Specification

 I/O lists contain variable names or expressions and formats. The formats can be fixed-
field, free-field, or pictures, and can contain positional parameters. If a slash (/) appears
in the output specification, the write is positioned to the next line. The backslash (\) is not
allowed in an output specification.

 To specify an expression in an output specification, enclose it in square brackets. The
value of the expression is calculated and output according to the output format at
execution time.

Format specifications for date, time and categorical variables may be numeric or string.
The data is automatically converted to a proper output string, if string specifications are
used.

If an output format is not specified, the first format encountered is taken to apply to all
previous fields without a format.

If no formats or a free-field (*) format is specified, the following defaults are used:

• Integers use an "Iw" format, where w is the minimum required to print the value.
• Floating point either use an "Fw.d" format, where "w" and "d" are adjusted to

maintain significance up to 8 decimal places or the "E" (scientific) notation with 5
significant decimal digits, depending on the value written.

• Strings use an "A*" format that writes the number of characters in the string
followed by a blank.

• Date, time and categorical variables are written as strings.

Do not specify an output format for string constants (characters enclosed in quotes); these
are written out as specified. If a format is specified, an error message is issued.

Picture clauses

A picture can be specified for numeric fields instead of a format. A picture is a string of
characters, enclosed in quotes. Within the picture certain characters have special
meanings:

Each digit can be represented by a "9", a "z", a "*" or a "$". "9" specifies that leading
zeros are replaced by blank; "z" specifies that leading zeros are written; "*" specifies that
leading zeros are replaced by "*"; "$" after an initial "$" character, represents a floating
dollar sign where leading zeros are suppressed. If the field has a value of zero, a picture
of all "9"s results in blanks and all "$"s results in a single "$" since all leading zeros are
suppressed; if a single zero is wanted, specify a single "z" as the last character of the

SIR/XS Visual PQL 130

picture.
A period represents the decimal point and separates the specification into characters
before and after the decimal point. There can only be one decimal point (period) in the
picture. If there are insufficient digits to display the integer portion of the field (including
any minus sign when negative and $ when specified), the field is written as all 'X's. The
decimal component is rounded to match the number of decimal digits specified. If there
are no decimal digits in the picture, the field is rounded to the integer value.
Specify comma (,) to insert this character. If leading zeros are suppressed (by blanks or a
floating dollar), any leading commas are suppressed. If a single dollar sign is specified, it
is output in that position. If multiple dollar signs are specified, these suppress leading
zeros and result in a floating dollar sign that is output in front of the first significant digit.
After the decimal point, the special characters "9", 'Z', "$" and "*" are all equivalent and
specify a digit. Any other characters are treated as any other special character.
Negative numbers, by default, are output with a minus sign ahead of the first significant
character. If an explicit minus sign is included as the last character in the picture, and the
number is negative, the minus is written at that point. Any other characters are output at
the position specified in the picture.
The same picture specifications apply to the PFORMAT function. For example:

PROGRAM
c The following formats produce following output
WRITE [123.4] ('$ZZ,ZZZ.99-') | $00,123.40
WRITE [123456789] ('ZZZ-ZZZ-ZZZ') | 123-456-789
WRITE [-123.4] ('99,999.99') | -123.40
WRITE [-123.4] ('$99,99Z.99') | $ -123.40
WRITE [-123.4] ('$$,$$Z.99') | -$123.40
WRITE [-123.4] ('ZZ,ZZZ.99') | -0,123.40
WRITE [-123.4] ('$ZZ,ZZZ.99') | $-0,123.40
WRITE [-123.4] ('99,999.99-') | 123.40-
WRITE [-123.4] ('$99,99Z.99-') | $ 123.40-
WRITE [-123.4] ('$$,$$Z.99-') | $123.40-
WRITE [-123.4] ('ZZ,ZZZ.99-') | 00,123.40-
WRITE [-123.4] ('$ZZ,ZZZ.99-') | $00,123.40-
WRITE [1234.56]('$*******.**') | $***1234.56
WRITE [1234.56]('Z Z Z Z . Z Z') | 1 2 3 4 . 5 6
WRITE [1234.56]('ZZZZ') | 1235
END PROGRAM

Fixed-field formats

Iw Integer, w digits wide

Fw.d Real single precision, w digits wide, d decimal places

Ew.d Real, scientific notation

Dw.d Real double precision, w digits wide, d decimal places

SIR/XS Visual PQL 131

Aw String, w characters wide

Bw String, characters reversed (backwards)

DATE 'format' See date formats for a complete description. For example:
WRITE XBEG (DATE 'MMM DD, YYYY')

TIME 'format' See time formats for a complete description. For example:
WRITE ALARM (TIME 'HH:MM:SS')

Free-field formats

* Any free-field variable

I* Integer

F* Real

E* Real, scientific notation

D* Real, double precision

A* String

Positional specifiers

nX Skip the next n columns before writing the next variable.

 nT Move (Tab) to column n before writing the next variable. n must be 1 or greater.

Array Element Printing

nE Print the next n elements of the previous array. n must be 1 or greater. Multi-
dimensional arrays are printed so that entry (1,1) is first, (2,1) is second through to (n,1)
that is followed by (1,2) etc.

SIR/XS Visual PQL 132

Database Access
There are VisualPQL commands that access and update data stored in a Database.

Any VisualPQL program that uses CASE or RECORD processing commands must begin
with the RETRIEVAL command. This implicitly opens the current default database for
access by the retrieval. By default, the database is opened for read, meaning that the
retrieval can get data from the database but cannot add, delete or modify data. Retrievals
that create, modify or delete database data must use the UPDATE option on the RETRIEVAL
command.

By default, the last database connected is the default.

If a VisualPQL program references a database, it must be connected when the retrieval is
compiled and must be connected when the retrieval is executed.

There are commands to connect and disconnect databases. A VisualPQL retrieval can
access a specified database and then all references are to variables in that database.

A SIR/XS session can be started with an MST= parameter, in which case any database
access by VisualPQL programs is through the concurrent MASTER process. A session can
logon and logoff to Master as necessary. VisualPQL database access is either local or
through Master depending on the current status of the master setting.

When operating in concurrent mode, locks on individual records may be specified. If a
retrieval does not specify locks, defaults are used. If a retrieval specifies locks and does
not run through master, any locking is ignored. An identical VisualPQL retrieval can run
concurrently and independently. Even if there are processes accessing the database
through MASTER, a retrieval can be run in a SIR/XS stand-alone session and use read
only mode against the same database.

Data availability during retrieval

During the execution of a retrieval, data can be in local variables, case or common
variables and record variables. The same name may be used for local, case and record
variables and the actual variable referenced depends on the placement of the command
and its scope.

Local Variables

Local variables include the variables and arrays declared explicitly or implicitly in the
routine and any variables included with an INCLUDE EXTERNAL VARIABLE BLOCK.

SIR/XS Visual PQL 133

Case variables

If the database is a case structured database, each case in the database has one CIR or
Common Information Record. The CIR contains common variables including the Case
Identifier variable that uniquely identifies each case. The common variables are defined
when the database schema is created.

During execution, a retrieval accesses a CIR with one of the Case Processing commands.
A case processing command defines a block of commands, a Case Block. The common
variables are available at any point in the case block, including within record processing
blocks. When a case block is executed the case variables are read and other commands
within the block can use the common variables. When the case block is exited or when
another case is read, if the CIR has been modified it is replaced in the database.

Record variables

Databases are made up of multiple Record Types. Each record type contains a set of
variables defined during database schema definition. Some of these variables may be key
fields that, in combination with the case identifier variable, uniquely identify an
individual record. The structure of the record type cannot be altered through a retrieval.

During execution, the retrieval accesses records with one of the Record Processing
commands. A record processing command defines a block of commands, a Record Block.
Within a record block other commands may get values from or put values into the record
variables. When a record block is executed the record variables are read and other
commands within the block can use these variables. When the record block is exited or
when a new record is read, if the record has been modified it is replaced in the database.

If a record block is nested within another record block, the variables for the outer record
are restored when the inner block is exited.

Priority of Access to Data

At any given point during retrieval execution, a retrieval potentially has access to one set
of common variables, one set of record variables and the local variables. It is possible,
even likely, that a local variable has the same name as a common or record variable in the
database. If the referenced variable exists both as a database variable and a local variable,
VisualPQL uses the following rules to decide which variable to use:

• If the reference is outside a case or record block, the local variable is used.
• If the reference is within a case block, the case variable is used rather than a local

variable of the same name.
• If the reference is within a record block, the record variable is used rather than a

local variable of the same name.

SIR/XS Visual PQL 134

• If the reference is within a record block and the CIR and the record both contain a
variable of the same name, the record variable is used. If the variable is updated,
both the record variable and the CIR variable are updated.

Skipping blocks

Commands specify a particular record or record type to retrieve. If there are no matching
records, then the block of commands is skipped completely. When developing a retrieval,
this must be taken into account. For example:

RETRIEVAL
PROCESS CASES ALL
OLD REC IS EMPLOYEE
. GET VARS ALL
. PROCESS REC 2
. GET VARS ALL
. WRITE ID NAME SALARY
. END PROCESS REC
END REC IS
END PROCESS CASE
END RETRIEVAL

The WRITE command is not executed if there are no record type 2 for an employee and
thus that employee does not appear on the output. Any variables that are updated within
the block, are not reset. The AUTOSET command can be used to reset variables in this
instance.

SIR/XS Visual PQL 135

PQL CONNECT DATABASE

PQL CONNECT DATABASE database_name_exp
[PREFIX prefix_exp]
[SECURITY exp,exp,exp]
[IOSTAT varname]

Connects the specified database at execution time. Sets this as the default database. Does
not automatically run any SYSTEM procedures.

All the parameters, except the IOSTAT varname are expressions; enclose any name
constants in quotes.

There is a table of connected databases, one of which may be the current default
database. By default, the last database connected is the default and is the first database
referenced by a RETRIEVAL.

If a VisualPQL retrieval references a database, it must be connected when the program is
compiled and must be connected before it is executed. This means that the PQL CONNECT
DATABASE command cannot be used to connect and compile or connect and execute
within one VisualPQL process.

A database can also be connected with the SIR/XS command CONNECT DATABASE.

SECURITY Three expressions separated with commas. Specify the database password,
then the read password then the write password.

IOSTAT A numeric variable that returns the database connection number if successful or a
negative number (in the range -2001 to -2058) if there is a problem with the connection.
See error messages.

SIR/XS Visual PQL 136

PQL DISCONNECT DATABASE

PQL DISCONNECT DATABASE database_name_exp
[IOSTAT varname]

Disconnects the named database. If PQL DISCONNECT is executed on the default database,
the default is set to zero and SYSPROC is set as the procfile.

IOSTAT A numeric variable that returns a negative number (in the range -2001 to -2058)
if there is a problem with the connection. See error messages.

SIR/XS Visual PQL 137

DATABASE IS

DATABASE [IS] dbname [UPDATE|NOUPDATE]

Starts a block that accesses a specified database. May only be used in a RETRIEVAL.

Inside this block, all references are to variables in the new database. Any standard
VisualPQL commands can be used in this block. (This is not a looping block so NEXT
cannot be specified.)

Within a RETRIEVAL, the initial database is the default database.

Note the database name in this command is a constant e.g. DATABASE IS COMPANY not an
expression as the name is required at compile time as well as during execution.

END DATABASE IS

END DATABASE [IS]

Ends definition of a database block. References outside this block are to the original
database. When the block is exited, if there was an original database, it is made current.

SIR/XS Visual PQL 138

Case Processing Commands

The case processing commands define a block of commands that is delimited with the
END CASE command. These commands are not valid for caseless databases. Each time a
case is accessed with one of these commands, the common CIR variables are available to
other commands within the block. There are two commands that process cases:

• PROCESS CASES retrieves a specific set of cases and updates these cases if
required.

• CASE IS (and the variants NEW CASE IS and OLD CASE IS) retrieves or creates a
single case with a specified case id.

All updates to the database, including the creation of a new case, require the UPDATE
keyword on the RETRIEVAL command. New cases are created with the CASE IS or NEW
CASE IS block. Existing cases may be accessed with the other types of case blocks.

Commands in CASE Blocks

All commands(except AFTER RETRIEVAL), including other case block commands, may be
used within a case block. The following commands may only be used within a case
block:

• DELETE CASE
• EXIT CASE
• NEXT CASE
• RESTORE CIR
• RETRY CASE
• BACKUP

Be aware of how commands transfer values from the CIR to local variables and vice-
versa:

• Any VisualPQL command in a case block that assigns a value to a variable
assigns the value to a common variable if a common variable of the specified
name exists.

• The value of the case identifier variable can never be modified from within a case
block.

COMPUTE can be used within case blocks to update database variables. If the computed
variable is a CIR variable, the value of the expression is assigned to it and the database
value is modified. For example, in a database that has a common variable called
COMMVAR, the following retrieval allows the user to modify its value.

SIR/XS Visual PQL 139

RETRIEVAL UPDATE
CASE IS 5
WRITE 'Current Value of COMMVAR is ' COMMVAR
COMPUTE COMMVAR = SREAD('Enter New Value for COMMVAR')
END CASE
END RETRIEVAL

GET VARS transfers the value of a CIR variable to a local variable. When a CIR variable
is referenced within a case block, the value of the CIR variable is used (even if a local
variable of the same name exists).

GET VARS can implicitly define a local variable with the definition of the database
variable as well transferring the value, whereas COMPUTE simply assigns the value.

PUT VARS transfers values of local variables into database variables. PUT VARS may only
be used in update mode.

The following example assigns the value of a CIR variable to a local variable that is
accessed later from outside the case block.

RETRIEVAL
. PROCESS CASES REVERSE COUNT = 1 | find the last case
. GET VARS COMMVAR | get value of COMMVAR
. END CASE
WRITE COMMVAR | display value of COMMVAR
END RETRIEVAL

Case Functions

COUNT(rt_num) Returns the number of records of the specified record type belonging to
the current case. If the specified record type is not defined, an
undefined value is returned. (Use in the case block.)

SYSTEM(14) Returns a 1 if the last CASE IS, NEW CASE IS, or OLD CASE IS block
was executed. It returns 0 (zero) if the last block was not executed.

SYSTEM(15) Returns a 1 if the last CASE IS or NEW CASE IS block created a new
case. It returns 0 (zero) if the block did not create a new case. (Use the
SYSTEM functions after the case block.)

SIR/XS Visual PQL 140

CASE IS

[NEW | OLD] CASE IS caseid [LOCK = num]

CASE IS defines a block that accesses the single case specified by the case id. The case id
value may be a constant or local variable, including an array reference.

CASE IS Accesses a single case in the database. If the case does not exist, then
in UPDATE mode, a new case is created; if the retrieval is not in UPDATE
mode and the case does not exist, the CASE IS block is skipped.

OLD CASE IS Accesses an existing case. If the case does not exist, the CASE IS block
is skipped.

 NEW CASE IS This command is only allowed in a RETRIEVAL UPDATE and creates a
new case with the specified case identifier value. If the specified case
already exists, the NEW CASE IS block is skipped and no new case is
created.

LOCK Specifies case level locking for concurrent operations.

SIR/XS Visual PQL 141

DELETE CASE
 DELETE CASE [KEEPCIR]

Deletes the current case (CIR) and all records belonging to the case. This command is
only allowed in UPDATE mode. Only users with the highest read and write security
passwords for the database may delete cases and records.

KEEPCIR Deletes all records belonging to the case but does not delete the
Common Information Record.

The following example deletes all cases that do not have any record type 1 records.

RETRIEVAL UPDATE
PROCESS CASES
IF(COUNT(1) EQ 0) DELETE CASE
END CASE
END RETRIEVAL

SIR/XS Visual PQL 142

END CASE
 END CASE

Terminates CASE IS and PROCESS CASE blocks.

END CASE IS terminates CASE IS blocks only.

END PROCESS CASE terminates PROCESS CASE blocks only.

SIR/XS Visual PQL 143

EXIT CASE
 EXIT CASE

Terminates processing of the current case block and transfers control to the first
statement following the END CASE.

SIR/XS Visual PQL 144

NEXT CASE
NEXT CASE

 Terminates processing of the current case and retrieves the next case if there is one that
meets the PROCESS CASE specification.

SIR/XS Visual PQL 145

PREVIOUS CASE
PREVIOUS CASE

 Terminates processing of the current case and retrieves the previous case if there is one
that meets the PROCESS CASE specification. Use of this with SAMPLE or COUNT yields
unpredictable results.

SIR/XS Visual PQL 146

PROCESS CASE

PROCESS CASES [ALL]
 [COUNT = total [,inc [,start]]]
 [LIST = caseid list]
 [LOCK = num]
 [REVERSE]
 [SAMPLE = fraction [,seed]]

Defines the beginning of a case processing block that is delimited by the END CASE
command. PROCESS CASE and PROCESS CIR are synonyms.
The options on PROCESS CASES define the set of cases that are stepped through. The
commands in this block are executed once for each case within the specified set.

If there is no PROCESS CASE command in the retrieval and the database has a case
structure, a PROCESS CASES ALL command is generated before the first executable
command in the retrieval. The NOAUTOCASE option on the RETRIEVAL command
suppresses this.

ALL Processes all cases in the database. This is the default.
COUNT Specifies the number of cases to process. The values for total,

increment and start are variables or expressions which should resolve
to positive integer values. A single integer number is a valid
expression.

total
Specifies the maximum number of cases to retrieve. If more cases are
requested than are available, the retrieval reads as many as exist. For
example, to process the first 5 cases in the database:

PROCESS CASES COUNT = 5

increment
Specifies the "skipping factor" for retrieving cases. An increment of 3
produces every third case. For example, to access a total of 5 cases,
retrieving every tenth case:

PROCESS CASES COUNT = 5 , 10

start

SIR/XS Visual PQL 147

Specifies the ordinal of the first case processed. For example, 3 starts
retrieving at the third case.

LIST Specifies a list of case identifier values of the cases to process. The list
may be composed of constants or variables. The THRU keyword
specifies an inclusive range of case id values. For example:

PROCESS CASES LIST = 1,2,8,17
WRITE IDNUM
END CASE

PROCESS CASES LIST = 1,5 THRU 10,18,20
WRITE IDNUM
END CASE

SET FVAR LVAR (5,10)
PROCESS CASES LIST = FVAR THRU LVAR
WRITE IDNUM
END CASE

LOCK Specifies case level locking for concurrent operations.
REVERSE Specifies that the cases are processed in reverse order. Note that if you

specify a list of specific cases, the list order is the order of processing
regardless of this setting.

SAMPLE Retrieves a random sample of cases from the database. The specified
values for fraction and seed are variables or expressions which should
resolve to positive numbers. A specific decimal number or positive
integer is a valid expression.

fraction
Specify a number between 0 (zero) and 1 (one). The retrieval generates
a random number between 0 and 1 for each case. If the number falls
between 0 and the specified number, the case is retrieved, otherwise
processing goes on to the next case. Since each case is evaluated for
inclusion independently, the actual sample may not be exactly the
requested size particularly for databases with a limited number of
cases. For example, to process 25% of the cases:
PROCESS CASES SAMPLE = .25

seed
Specify the starting seed for the random number generator. A given
seed guarantees that the same set of random numbers is generated.
Note that the PQLProcedures may also use samples and the SAMPLE
option here, resets the seed for any sampling. It is recommended that
the seed is set using the SEED option on the retrieval command and that
all subsequent sampling in the retrieval uses the random numbers
generated from that. If a seed is not specified, the random number
generator is not reset. For example
PROCESS CASES SAMPLE = .25 , 13579

SIR/XS Visual PQL 148

RESTORE CIR
 RESTORE CIR

Re-reads the CIR from the database. When a case block is first executed, a CIR is read.
Updates to common variables are performed in memory. The modified record is re-
written when the case block is exited, another CIR is accessed or when a BACKUP
command forces a write. A RESTORE CIR before the data is re-written cancels all
modifications.

SIR/XS Visual PQL 149

Record Processing Commands

Record processing commands access a specific record type. These commands define a
block of commands that is delimited with the END RECORD command. When a record is
accessed, the record variables are available to other VisualPQL commands within the
record block. On case structured databases, record blocks must be nested within a case
block. There are two commands that process records:

• PROCESS RECORD retrieves a specific set of records and updates these records if
required.

• RECORD IS (and the variants NEW RECORD IS , OLD RECORD IS) retrieves or
creates a single record with a specified record key.

To perform any updates to the database, including the creation of new records, the
retrieval must be in update mode. New records are created with a RECORD IS or NEW
RECORD IS block. Existing records may be accessed with the other types of record
blocks.

Record Functions

RECLEVEL(0) Returns the update level at which this record was last written to the
database. Can only be used in a record block.

SYSTEM(3) Returns the update level at which a record was last written to the
database. The record referred to is the record from the last record block
executed.

SYSTEM(16) Returns a 1 if the last REC IS, NEW REC IS, or OLD REC IS block was
executed. It returns 0 (zero) if the last block was not executed.

SYSTEM(17) Returns a 1 if the last REC IS or NEW REC IS block created a new
record. It returns 0 (zero) if the block did not create a new record. (Use
the SYSTEM functions after the record block.)

Commands in RECORD Blocks

All commands, including other record block commands, may be used within a record
block. The following commands may only be used within a record block:

DELETE RECORD
EXIT RECORD
NEXT RECORD
RESTORE RECORD
RETRY RECORD
BACKUP.

SIR/XS Visual PQL 150

Be aware of how commands transfer values from the record to local variables and vice-
versa:

• Any command in a record block that assigns a value to a variable assign the value
to a database record variable if a record variable of the specified name exists.

• The values of the case identifier variable and record type keyfield variables can
never be modified from within a record block.

COMPUTE or PUT VARS can be used in record blocks to update database variables. The
database variables can only be updated in a retrieval in update mode. If the computed
variable is a common or record variable, the value of the expression is assigned to it and
the database value is modified.

COMPUTE or GET VARS can be used to transfer the value of a database variable to a local
variable. GET VARS implicitly defines a local variable with the same definition as the
database variable as well transferring the value, whereas COMPUTE simply assigns the
value. When a record variable is referred to in an expression, the record variable is used
even if a local variable of the same name exists.

SIR/XS Visual PQL 151

RECORD IS
 [OLD | NEW] RECORD IS {name | number} (value list)

Defines a record block that accesses a single record. The value list must specify a valid
value for every keyfield of the record type. If any keyfield is missing or undefined, the
block is skipped. RECORD and REC are synonyms. In a case structured database, record
blocks occur within case blocks and the records accessed belong to the current case.

 RECORD IS Accesses a record if it exists. If it does not exist and the retrieval is not
in UPDATE mode, the RECORD IS block is skipped. In UPDATE mode, a
new record is created.

OLD RECORD IS Accesses an existing record. If the specified record does not exist, the
OLD REC IS block is skipped.

NEW RECORD IS Creates a new record with the specified key values. Only allowed in a
RETRIEVAL UPDATE. If the specified record exists, the NEW REC IS
block is skipped.

name | number The record name or number. This must be specified.
value list A list of values expressed as constants, variable names or array

references. Each element in the list represents a value for a keyfield.
Specify the values in sequence to match keyfields in the order defined
in the schema. Specify a valid value for every keyfield of the record
type. If any keyfield is missing or undefined, the record block is
skipped. If the record type being accessed has no keyfields, specify the
command without a value list.

LOCK Specifies record level locking for concurrent operations.

SIR/XS Visual PQL 152

DELETE RECORD

 DELETE RECORD Deletes the current record.

A record can only be deleted in UPDATE mode. Deleting a record requires write security at
an equal or higher level to the record write security level. It also requires write security at
an equal or higher level to the highest write security level of any variable in the record.
For example, the following deletes all record type 3 records that were updated at update
level 47:

RETRIEVAL UPDATE
PROCESS CASES
. PROCESS REC 3
. IF(RECLEVEL(0) EQ 47)DELETE REC
. END REC
END CASE
END RETRIEVAL

SIR/XS Visual PQL 153

END RECORD

END RECORD [IS]
END PROCESS RECORD
END PROCESS JOURNAL
END JOURNAL RECORD

Terminates RECORD IS, PROCESS RECORD blocks and PROCESS JOURNAL, JOURNAL
RECORD blocks.

END RECORD IS terminates RECORD IS blocks.

END PROCESS RECORD terminates PROCESS RECORD blocks.

END PROCESS JOURNAL terminates PROCESS JOURNAL blocks.

END JOURNAL RECORD terminates JOURNAL RECORDblocks.

REC is a synonym for RECORD.

SIR/XS Visual PQL 154

EXIT RECORD
 EXIT RECORD

Terminates processing of the current record block and transfers control to the first
statement following the END RECORD.

REC is a synonym for RECORD.

SIR/XS Visual PQL 155

NEXT RECORD
 NEXT RECORD

Terminates processing of the current record and retrieves the next record if it exists. REC
is a synonym for RECORD. The following example processes only the males in the
database.

RETRIEVAL
PROCESS CASES
. PROCESS RECORD EMPLOYEE
. IFNOT (GENDER = 1) NEXT REC |- go to next rec if not male
. WRITE NAME SSN BIRTHDAY
. END REC
END CASE
END RETRIEVAL

SIR/XS Visual PQL 156

PREVIOUS RECORD
 PREVIOUS RECORD

Terminates processing of the current record and retrieves the previous record if it exists.
REC is a synonym for RECORD. Use of this with SAMPLE or COUNT yields unpredictable
results.

SIR/XS Visual PQL 157

PROCESS REC

PROCESS RECORD name | num
 [LOCK = num]
 [INDEXED BY index_name]
 [ONETIME]
 [REVERSE]
 [AFTER (value list)]
 [AFTER (value list) THRU (value list)]
 [AFTER (value list) UNTIL(value list)]
 [FROM (value list)]
 [FROM (value list) THRU (value list)]
 [FROM (value list) UNTIL(value list)]
 [THRU (value list)]
 [UNTIL (value list)]
 [VIA (value list)]

PROCESS RECORD, (PROCESS REC is a synonym), defines a block of commands that are
executed repeatedly, once for each record of the specified type within the specified range.
If the command does not use the INDEXED BY construct, then, in a case structured
database, the command must be inside a case block and the records accessed are those
belonging to the current case.

Note: Specifying a record selection clause (e.g. AFTER, FROM, THRU, etc.) on the PROCESS
REC locates records through the database index, which is an efficient way to process
subsets of records. Use record selection clauses whenever possible.

 name | num The name or number of the record type to retrieve. This is required.
 LOCK Specifies record level locking for concurrent operations.
 INDEXED BY Specifies the name of the index to use to retrieve records. All record

selection clauses can be used in conjunction with INDEXED BY. When
an index is used, the key values are those values used for the index.

ONETIME By default, when no records exist within the specified range, the block
is skipped. ONETIME forces the block to be entered with the values of
the record variables set to undefined, when there are no matching
records.

REVERSE Processes the records in reverse order. If used with a record selection
clause, processes the selected subset in reverse order. If specifying a
range of record keys to select, specify these in the normal way (i.e. the
FROM key has a lower value than the UNTIL key).

 AFTER Selects records whose key value is greater than that specified by the

SIR/XS Visual PQL 158

value list. AFTER can be used in combination with THRU or UNTIL to
specify a range of keys.

 FROM Selects records whose key value is greater than or equal to the key
specified by the value list. FROM can be used in combination with THRU
or UNTIL to specify a range of keys.

 THRU Specifies the key value to process to and include in the retrieved
subset. Use AFTER or FROM to specify a beginning record for
processing.

 UNTIL Specifies the key value to process up to but not include in the retrieved
subset. Use AFTER or FROM to specify a beginning record for
processing.

VIA Selects records whose key value matches (equals) the key specified
by the value list. If a partial key value list is specified, all records
matching the partial list are selected. WITH is a synonym for VIA.

value list A list of values for keyfields. These may be expressed as constants,
variable names or array references. The list is matched with values of
keyfields in the order defined in the schema or the order defined in the
index. The value list need not list values for the entire set of keyfields.
Low level keys may be omitted, but not higher levels. For example, if
A, B, and C represent a record's keyfields, then:

VIA (A, B, C) legal
VIA (A) legal
VIA (A, B) legal
VIA (,,C) invalid, needs A and B
VIA (A,,C) invalid, needs B

During execution, if a value is undefined or missing, the value list is
treated as if it were terminated with the value previous to the undefined
value.

Note: In earlier versions of the software, undefined values caused an
execution error.

SIR/XS Visual PQL 159

RESTORE REC
 RESTORE REC

Re-reads the current record from the database. When a record block is first executed, a
data record is read into memory. Updates to record variables are performed in memory.
The modified record is re-written to the database when the block is exited. A RESTORE
REC cancels all modifications when done before the record is re-written.

RETRY RECORD is a synonym.

SIR/XS Visual PQL 160

BACKUP
 BACKUP

Writes modified database record or CIR to the database.

During a Retrieval Update, updates are performed in memory. The modified CIR or
record is copied to the database when the processing block is exited or before another
CIR or record occurrence is accessed.

BACKUP forces a write and is very seldom needed.

This is only allowed in retrievals in update mode.

SIR/XS Visual PQL 161

Processing Database Journals

 A database journal is a record of updated records on the database. (A database unload
file is in identical format and can also be processed in VisualPQL with these commands.)

The journal file consists of a linked set of entries, one entry per update run. Each entry
consists of a set of images of updated records in that run. The images consist of before
and after images of updated records.

The PROCESS JOURNAL command allows you to get information about the various entries
on the journal and to select one or more entries to process. When processing through an
entry, data records are read in sequence from the earliest to the latest. Within the PROCESS
JOURNAL block, a JOURNAL RECORD IS record_type names the record that is of interest.
This block is given control when a record of that type is read. Within this block, you can
use normal VisualPQL to access the data from the journaled record using the record
variable names. e.g.

PROCESS JOURNAL
. JOURNAL RECORD IS record_type
. PQL access to record variables
. END JOURNAL RECORD IS
END PROCESS JOURNAL

You can specify a PROCESS JOURNAL in a program and it can run with no database
attached to examine the headers on the file. However a database schema is needed to
interpret the data and to compile any JOURNAL RECORD IS record_type commands and
so the JOURNAL RECORD IS record_type can only appear in a retrieval (you may want
to specify NOAUTOCASE). In a retrieval, the file being processed must match the current
database both at compile time and at execution time.

If you are processing a journal for a case structured database, note that the journal entries
for individual records do not have any non-key common variables; these are on a separate
journal for the CIR. The common vars can only be referred to in a JOURNAL RECORD IS
CIR block and not within the individual record blocks. Further, the journal holds a
sequential series of records which is written as the records are updated. If records in a
case are updated but no common vars are updated, then there will not be a journal entry
for the CIR. If some common vars are updated, the CIR journal entry follows the
individual record journal entries. If only common vars are updated, then there will not be
a journal entry for the individual record type.

SIR/XS Visual PQL 162

Do not specify a JOURNAL RECORD IS record_type block inside another JOURNAL
RECORD IS record_type block. Since the block is only entered for the specified record
type, the inner block with a different record type is never executed.

You can compile JOURNAL RECORD IS record_type blocks which are not physically in
a PROCESS JOURNAL block so they might be in a sub-routine or sub-procedure. If a
JOURNAL RECORD IS record_type block is executed that is not in an executing PROCESS
JOURNAL block, it is simply skipped.

SIR/XS Visual PQL 163

PROCESS JOURNAL

PROCESS JOURNAL
 [FILENAME= fname_expression] (sr5 is the default)
 [FROM = updlevel | START = date [,time]]
 [THRU = updlevel | END = date [,time]]
 [REVERSE]
 Return Data
 [DATE = varname] [ENDDATE = varname]
 [TIME = varname] [ENDTIME = varname]
 [LEVEL = varname]
 [RECORD = varname]
 [TYPE = varname]
 [USER = varname]

PROCESS JOURNAL, defines a block of commands that are executed repeatedly, once for
each journal record within the specified range. Some records are headers that identify the
update run and some are data records that contain information about a particular record
type that was updated in the run.

The PROCESS JOURNAL command has two sets of keyword specifications. The first set
specify a filename, which journal entries to process and whether to go from earliest to
latest or in reverse. Selecting entries to process can be on the basis of update levels or
date and time and can specify either start points, end points or both. All of these
specifications are expressions which evaluate to the value to use. Typically these are
specified as a variable name which holds the value.

The second set of specifications name a number of variables that are then used by the
process to return information to the program. If you are selecting multiple entries, then
information may be needed about which entry is being processed. When processing the
potentially multiple records within an entry, information may be needed about the
individual record image that is above and beyond the actual data in the record.

The named file is processed until a header matches the PROCESS JOURNAL specification.
Control is then passed to the VisualPQL inside the block for each record until a new
header is reached that does not match the specification and the block is exited.

 FILENAME =
fname_expression

The journal file to process. If not specified, the default is the current
journal file for the default database (the .sr5 file). Specify the name
as an expression, that is a string variable or other string expression.
If you are specifying a known filename, you can simply enclose it in
quotes e.g.

SIR/XS Visual PQL 164

FILENAME = 'COMPANY.UNL'
 FROM = updlevel The first update level to start processing journal entries. If not

specified, processing starts at the first journal entry on the file.
THRU = updlevel The last update level to process. If not specified, processing stops

after processing the last journal entry on the file.
START = date
[,time]

The date and, optionally the time, of the first journal entry to start
processing. Date is an expression that resolves to a date in format
MMIDDIYY. Time, if specified, is an expression that resolves to a time
in format HHIMMISS. Use either (or neither) a start time or a from
update level, do not specify both.

END = date
[,time]

The date, and optionally the time, of the last journal entry to process.
Date is an expression that resolves to a date in format MMIDDIYY.
Time, if specified, is an expression that resolves to a time in format
HHIMMISS. Use either (or neither) an end time or a thru update level,
do not specify both.

 REVERSE Specifies that the journal is processed in reverse sequence. This only
effects the sequence of entries not the sequence of records presented
within entries. i.e. If the journal holds entries relating to updates that
took the database from update level 5 to 6, 6 to 7 and 7 to 8,
REVERSE presents 7 to 8, then 6 to 7 then 5 to 6. This also affects the
way that you specify selection - specify the level/date/time to start
that is higher/later than the one to finish.

DATE = varname Specify a variable name. If specified, this contains the start date of
the journal entry currently being processed.

ENDDATE =
varname

Specify a variable name. If specified, this contains the end date of
the journal entry currently being processed.

TIME = varname Specify a variable name. If specified, this contains the start time of
the journal entry currently being processed.

ENDTIME =
varname

Specify a variable name. If specified, this contains the end time of
the journal entry currently being processed.

LEVEL = varname Specify a numeric variable name. If specified, this contains the
update level of the journal entry currently being processed.

RECORD = varname Specify a numeric variable name. If specified, this contains the
record type of the journal data record currently being processed.

 TYPE = varname Specify a numeric variable name. If specified, this contains the type
of the journal record currently being processed. The journal type is a
positive number for data records and a negative number for journal
headers. Types are:
1 New record written (This is the type of all data on an unload file.)
2 Before existing record updated
3 After existing record updated. Note that these before and after
records are a pair and are written together.

SIR/XS Visual PQL 165

4 Before Record deleted
-1 Journal Data header
-2 Unload Schema header
-3 Unload Data header
-4 Journal Schema header
-5 User header

 USER = varname Specify a character variable name capable of holding a 32 byte
name. If specified, returns the name of the user responsible for the
update. This is taken from the SIRUSER if it is specified on start up,
or from the system environment variables (from sir.ini)
USERNAME or USER. The username can be set during a session by the
SIRUSER PQL function.

See Processing Journals for more details.

SIR/XS Visual PQL 166

JOURNAL RECORD IS
 JOURNAL RECORD IS {name | number}

Defines a record block that is entered when the journal records being processed match the
specified record type.If there is a JOURNAL RECORD IS record inside the PROCESS
JOURNAL block and the journal record being processed matches the record type specified
then, when that block is reached, the block is processed. If the journal record does not
match a JOURNAL RECORD IS record that block is skipped.

Specify either a record number or a record name. To process the CIR specify either 0 or
CIR.

Within the block, you can use normal record variable names to process the data from the
journal record. You can use these for reports or can use them for other database
manipulation. You can nest other blocks e.g. database access, if required.

See Processing Journals for more details.

SIR/XS Visual PQL 167

EXIT JOURNAL IS
 EXIT JOURNAL IS

Terminates processing of the current journal record and exits the journal record is block.

SIR/XS Visual PQL 168

EXIT PROCESS JOURNAL
 EXIT PROCESS JOURNAL

Terminates processing of the current journal record and exits the process journal block.

SIR/XS Visual PQL 169

NEXT PROCESS JOURNAL
 NEXT PROCESS JOURNAL

Terminates processing of the current journal record and retrieves the next journal record.
This may be a data record or may be a new header.

NEXT PROCESS HEADER
 NEXT PROCESS HEADER

Terminates processing of the current journal set of records and retrieves the next journal
header. If processing a large journal update or an unload, this is much more efficient than
processing through every data record looking for the next header.

SIR/XS Visual PQL 170

Concurrent VisualPQL

 Use the MST= parameter when starting a SIR/XS session, or use the SET MASTER
command to use Master and thus use concurrent VisualPQL. VisualPQL programs run
concurrently may update the database concurrently with other products using Master.

MASTER must be running when a client tries to use it and all retrievals then run through
MASTER until the use of Master is turned off with a CLEAR MASTER command.

Read only retrievals run much faster when run in stand alone mode rather than through
MASTER. Retrievals execute properly in either mode.

Utilities ignore Master settings and may require exclusive access to the database.

Locking

 The LOCK = keyword on the database access commands, apply a lock to the case or
record being accessed for concurrent operations. The lock type is a numeric value and
may be specified as a constant or as an integer variable. Lock values are:

0 - Null. The lock is not specified and takes the default (exclusive in updates, concurrent
read in retrievals). Same as not specifying a lock clause.

1 - Exclusive. Same as 6.

2 - Concurrent Read. Anyone else may read or write this record. This process intends to
read this record. This is the default in retrievals.

3 - Concurrent Write. Anyone else may read or write this record. This process intends to
write this record.

4 - Protected Read. Anyone else may read this record. No-one may write this record. This
process intends to read this record.

5 - Protected Write. Anyone else may read this record. No-one may write this record.
This process intends to write this record.

6 - Exclusive. No-one else may read or write this record. This is the default in updates.

Changing Locks

Once a record or case has been retrieved, it is possible to alter the locktype held on that
record with the CASELOCK and RECLOCK functions. Specify the new locktype on the
function. If the change is successful, the record is written to the database and re-retrieved

SIR/XS Visual PQL 171

with the new locktype and the function returns a 1. The function returns a zero if the
change could not be made because of other locks on the record.

Lock Conflicts

During concurrent execution, the retrieval may encounter a record that is locked by
another user.

 Requested Lock

Current Lock Null 1 2 3 4 5

EX Locked Locked Locked Locked Locked Locked

CR Read Locked Write Write Write Write

CW Read Locked Write Write Locked Locked

PR Read Locked Write Locked Write Locked

PW Read Locked Write Locked Locked Locked

If the case/record is locked (see table above) then:

• the current case/record variables are all set to undefined;
• a flag is set that can be tested with two functions: SYSTEM(36) for records and

SYSTEM (37) for cases ;
• control is passed to the first statement in the block.

If the record is not available, the retrieval could wait to try accessing it again by using the
RETRY RECORD or RESTORE REC command. e.g.

PROCESS RECORD PATIENT LOCK = 4 | get the patient record
. LOOP
. IF(SYSTEM(36) = 1) EXIT LOOP | exit if we get the record
. WRITE 'Waiting for locked record' at 24,5
. WAIT 5 | wait half a second
. RETRY RECORD | try to get the record
. END LOOP
...
END PROCESS RECORD

SIR/XS Visual PQL 172

LOOKUP

LOOKUP {RECORD dbname.recname | TABLE tabfile.table}
 [FORWARD | BACKWARD]
 [GET VARS { ALL|
 target_varlist|
 local_varlist = target_varlist}]
 [INDEXED BY indexname]
 [RESULT num_varname]
 [USING caseid,keylist | VIA keylist]
 [WHERE (condition)]

LOOKUP accesses a single database record or table row if one exists that matches keys
and/or conditions and returns data as specified. The RECORD or TABLE clause must be
specified. Unless further clauses are specified, the command does not achieve anything.
The command may be specified in a PROGRAM, RETRIEVAL or SUBROUTINE at any point. It
does not affect other database or table access processes.

RECORD
[dbname.]recname
|
TABLE
[tabfile.]table

Specify either a record or table to use for the lookup. Specify the
database or tabfile containing the record or row unless the default.
The database or tabfile must be connected both at compile time and
at execution time.

FORWARD |
BACKWARD

Specify either FORWARD or BACKWARD to control the direction of
search. FORWARD is the default.

GET VARS ALL |
target_varlist |
local_varlist =
target_varlist

Specify GET VARS clause to pass back values if found.
The keyword ALL specifies all the matching record or table variables
are assigned to local variables of the same name.
A single list of variables creates a set of local variables with the
same names as the database or table variable list. Note that ALL or a
single list can only be used where table variables have valid local
variable names.
A list of local variables can be equated to a list of variables from the
target record or table and the local variables are assigned the values
of the database or table variables. The two lists must be of equal
length and the value assignments are performed listwise.

INDEXED BY

Specify an index to use if necessary.

SIR/XS Visual PQL 173

indexname
RESULT
num_varname

Specify a RESULT numeric variable to return positive for record
found, negative for not found. A negative number is an error code
and associated text can be retrieved with the MSGTXT function.

USING | VIA Specify either USING or VIA to lookup using particular key values.
On a case structured database, not using an index, USING specifies
the case key first, then record keys. VIA specifies keys in sequence
either from an index or from the current case. Where a key is
specified, it is matched exactly. If all keys are not specified, the
subset of records identified by the partial key is used. The values
specified may be constants or expressions. If expressions use
database record variables, these are from the current context not
from the record being looked for.

WHERE
(condition)

Specify a WHERE condition to test prospective records (either the
record that matched specified keys exactly or the subset identified
by partial keys). The first to satisfy the condition is returned.
Variables used in the condition clause may either be local or from
the looked up record.

SIR/XS Visual PQL 174

Accessing Tables
There are commands that create table rows, that update table variables and that access
data stored in tables.

The structure and contents of tables and tabfiles is discussed in Tabfiles and Tables.

Tables in tabfiles may be accessed in any VisualPQL routine (program, retrieval or
subroutine). Options on these routine commands affect tabfile and table processing.

Before a routine can be compiled or executed, the tabfile must be connected.

A program can connect a tabfile at execution time with the PQL CONNECT TABFILE
command.

Table processing differs slightly from database record:

• Tables may have indexes that can be used to access the table rows. Accessing
rows through an index determines the sequence in which the rows are retrieved.

• The only commands that deal directly with variables in a table are GET VARS and
PUT VARS. When retrieving a row of a table, move the values of the variables into
local variables with a GET VARS. Make any modifications to the local variables.
To update the values of variables in a table row, move the local variables into the
table row with a PUT VARS. Values of key fields of the index being used may not
be updated with PUT VARS.

• The names of the variables, indexes and tables may be up to 32 characters long.

Use the OPEN TABLE and CLOSE TABLE to open and close tables. If these are not used, the
tables are opened automatically when referenced.

Row Processing Commands

Row processing commands access a specific table. These commands define a block of
commands that is delimited with the END ROW command. Retrieve required row variables
using the GET VARS command to make the variables available to other VisualPQL
commands within the block. There are two commands that process rows:

• PROCESS ROW retrieves a specific set of rows and updates these if required.
• ROW IS (and the variants NEW ROW IS , OLD ROW IS) retrieves or creates a single

row.

SIR/XS Visual PQL 175

Any updates to the table, including the creation of new rows, require the TUPDATE
keyword either on the RETRIEVAL command or on the row processing command.
Create new rows with a ROW IS or NEW ROW IS block. Existing rows may be
accessed with the other types of row blocks.

Indexes

Tables can have Indexes that may uniquely identify a row or may identify a subset of
rows. Options on the row block commands specify a subset of the rows by specifying an
index and a range of index values. A table may have more than one index and more than
one variable in an index. VisualPQL locates individual rows through the index.

Commands in ROW blocks

Any command, including other row, case and record block commands, may be used
within a row block. The following commands may only be used in row blocks:

• DELETE ROW Deletes the current row.
• EXIT ROW Terminates processing of the row block.
• NEXT ROW Retrieves the next row in a PROCESS ROWS block.
• PREVIOUS ROW Retrieves the previous row in a PROCESS ROWS block.

ROW functions

Specify these functions after the ROW IS block to which they apply:

SYSTEM(27) Returns a 1 if the last ROW IS, NEW ROW IS, or OLD ROW IS block was
executed. It returns 0 (zero) if the last ROW IS block was not executed.

SYSTEM(28) Returns a 1 if the last ROW IS or NEW ROW IS block created a new row.
It returns 0 (zero) if the block did not create a new row in the table.

SIR/XS Visual PQL 176

OPEN TABLE
 OPEN TABLE tabfile_name.table_name [MODE mode_num]

Opens the specified table.

Specify the tabfile name and table name either as variables that contain the name or as
quoted strings. Ensure that the names have the correct use of upper and lower case letters
as both are allowed in tabfile and table names and thus no automatic conversions are
done.

The MODE clause specifies whether the table is opened for read or write access. Specify
the mode_num as a numeric variable or constant. 1 specifies READ mode, 2 specifies WRITE
mode. The default if MODE is not specified is READ mode.

If the tabfile is not connected or the table does not exist, a run time error is issued.

OPEN TABLE "TESTFILE"."TABLE1" MODE 2

SIR/XS Visual PQL 177

CLOSE TABLE
 CLOSE TABLE tabfile_name.table_name

Closes the specified table.

Specify the tabfile name and table name as variables that contain the name or quoted
strings. Ensure that the names have the correct use of upper and lower case letters as both
are allowed in tabfile and table names and thus no automatic conversions are done.

See also the CLOSETABLE option on PROCESS ROW and ROW IS.

SIR/XS Visual PQL 178

PQL CONNECT TABFILE

PQL CONNECT TABFILE tabfile_name_exp
 [FILENAME filename_exp | attribute_exp]
 [MODE {varname | constant}]
 [SECURITY exp,exp,exp,exp]
 [IOSTAT = varname]

Connects the specified tabfile at execution time. All of the parameters are expressions;
enclose names in quotes if specifying a constant. When assigning string values to
expressions, ensure names are upper case.

tabfile name
The internal name of the tabfile. Must be the same name as used when the tabfile was
created.

FILENAME
The name of the operating system file if different to the internal tabfile name plus the .tbf
suffix.

MODE
Specifies if the tabfile is opened for READ or WRITE. If MODE is not specified, it is
connected for READ. Specify 1 for READ, 2 for WRITE.

SECURITY
Specifies Group Name, Group Password, User Name and User Password in this order.

IOSTAT
Specifies a variable to receive the return code generated by the file open operation. A
return code of 0 (zero) indicates successful connection.
-7001 (Host error message number) indicates that the tabfile could not be opened.

Note: Because this command connects the tabfile at execution time, the tabfile may not
be connected at compile time. If the are subsequent references to the tabfile in this
VisualPQL program then they may not compile. You need to connect the tabfile before
compiling.

SIR/XS Visual PQL 179

PQL DISCONNECT TABFILE

PQL DISCONNECT TABFILE tabfile_name_exp [IOSTAT = varname]

Disconnects a tabfile.

IOSTAT
Specifies a variable to receive the return code generated by the file close operation. A
return code of 0 (zero) indicates successful disconnection as specified. -88 (DBMS error
message number) indicates that the tabfile could not be disconnected.

SIR/XS Visual PQL 180

DELETE ROW
 DELETE ROW

Deletes the current row. To delete a row, use the DELETE ROW command in a ROW IS or
PROCESS ROW block. This command may only be used in TUPDATE mode.

SIR/XS Visual PQL 181

END ROW

END ROW [IS]
END PROCESS ROW

 Terminates ROW IS and PROCESS ROW blocks.

END ROW IS terminates ROW IS blocks.

END PROCESS ROW terminates PROCESS ROW blocks.

SIR/XS Visual PQL 182

EXIT ROW
 EXIT ROW

Terminates processing of the row block.

SIR/XS Visual PQL 183

NEXT ROW
 NEXT ROW

Retrieves the next row in a PROCESS ROWS block.

SIR/XS Visual PQL 184

PREVIOUS ROW
 PREVIOUS ROW

Retrieves the previous row in a PROCESS ROWS block.

SIR/XS Visual PQL 185

PROCESS ROWS

PROCESS ROWS [tabfile.]tablename
 [INDEXED BY indexname]
 [CLOSETABLE num_val]
 [COUNT = total [,increment [,start]]]
 [ONETIME]
 [REVERSE]
 [SAMPLE= fraction [,seed]]
 [UPDATE | TUPDATE]
 [AFTER (value list)]
 [AFTER (value list) THRU (value list)]
 [AFTER (value list) UNTIL(value list)]
 [FROM (value list)]
 [FROM (value list) THRU (value list)]
 [FROM (value list) UNTIL(value list)]
 [THRU (value list)]
 [UNTIL (value list)]
 [VIA (value list)]

Defines a row processing block for the specified table. The commands within the block
(that is terminated with END ROW) are executed once for each row accessed. If a tabfile
name is not specified, the default tabfile is used.

 INDEXED BY Names the index to use. If this is not specified, the records are read
sequentially as stored on the table.

 CLOSETABLE Specifies whether the table is closed when the block is exited. A
value of 0 (zero) or undefined leaves the table open and is the default.
Any other value closes the table. When a table is closed, the memory
used to hold the table is released for other use. Unless memory
problems are encountered, avoid using this option. See also the CLOSE
TABLE command.

COUNT Specifies the number of rows to retrieve. The values for total,
increment and start are integer constants.

total
Specifies the maximum number of rows to retrieve. If more rows are
requested than are available, the program retrieves all that exist. e.g.
To process the first 5 rows in the table:

PROCESS ROWS TRIALTF.TABLE1 COUNT = 5
increment
Specifies the "skipping factor" for retrieving rows. An increment of 3

SIR/XS Visual PQL 186

retrieves every third row. The default increment is 1 (one). e.g. To
access a total of 5 rows, retrieving every tenth row:

PROCESS ROWS TRIALTF.TABLE1
 COUNT = 5 , 10
start
Specifies the first row processed. The default start is 1, the first row.
For example, 3 starts retrieving at the third row.

 REVERSE Processes the specified rows of the table in reverse order.

SAMPLE=fraction

Retrieves a random sample of rows from the table. The fraction
specifies the portion of cases to select. The number specified is a
decimal number between 0 (zero) and 1 (one). For each row, a
random number between 0 and 1 is generated. If it is between 0 and
the specified number, the row is retrieved. Each row is evaluated for
inclusion independently, and therefore the sample may not be exactly
the requested size particularly for tables with a small number of rows.
Sampling is done before COUNT takes effect (i.e. "SAMPLE .5/ COUNT
2" retrieves the first 2 of a 50% sample). e.g. To process 25% of the
rows in the table:

PROCESS ROWS TRIALTF.TABLE1
 SAMPLE = .25

seed
Specifies the starting seed for the random number generator. A given
seed guarantees that the same set of random numbers is generated. If
a seed is not specified, a default seed is used.

PROCESS ROWS TRIALTF.TABLE1
 SAMPLE =.25,13579

 TUPDATE Specifies that the program can update data in the rows of this table.
Use the PUT VARS command to update the row from local variables.
TUPDATE need not be specified on the PROCESS ROWS command if it
has already been specified on the routine command. UPDATE is a
synonym for TUPDATE.

 ONETIME Forces the PROCESS ROW block to be entered at least once, even if no
rows within the specified range exist. If no rows exist, without this
keyword, the block is skipped. The values of the row variables are set
to undefined if the block is executed and no rows exist.

value list A list of values expressed as constants, variable names or array
references. Each element in the list represents a value for an index
key field. The values are matched with values of keyfield variables in
the order defined for the index.
The value list may omit lower level keys. If a key is omitted, no lower
keys can be specified. During execution, if a value is undefined or

SIR/XS Visual PQL 187

missing, the value list is treated as if it were terminated with the
keyfield previous to the undefined value. N.B. This differs from the
behaviour in version 2.n. of the software where an execution warning
was reported and the block skipped.

 AFTER Specifies the key value to start processing at but not to include. This
selects rows whose key value is greater than the key specified by the
value list. Specify THRU or UNTIL to select a range of keys.

 FROM Specifies the key value to start processing and to include. This selects
rows whose key value is greater than or equal to the key specified by
the value list. Specify THRU or UNTIL to select a range of keys.

 THRU Specifies the key value to process up to and to include in the retrieved
subset. This selects rows whose key value is less than or equal to the
key specified by the value list. Specify AFTER or FROM to specify a
beginning row for processing.

 UNTIL Specifies the key value to process up to but not to include in the
retrieved subset. This selects rows whose key value is less than the
key specified by the value list. Specify AFTER or FROM to specify a
beginning row for processing.

 VIA Selects records whose key value matches (equals) the key specified
by the value list. If a partial key value list is specified, all records
matching the partial list are selected. WITH is a synonym for VIA.

Using Indexes

The keywords AFTER, FROM, THRU, UNTIL and VIA specify a subset of rows by
specifying values of the keyfields of the table.

If an index has been defined for the table and is referenced on the INDEXED BY clause,
each row is identified by its key. The key is a composite of the values of the key fields as
defined for the index.

VisualPQL locates individual rows through the index that points to the location of a row
within the tabfile. The value list specified with the keywords on PROCESS ROW supplies
values of the keys that VisualPQL uses to perform an indexed search for the records. The
values in the list are matched to values of index key variables in the rows being
processed.

The order of the values determines the keyfields to which the values refer. The keyfields
and their order are passed to the PROCESS ROW list from the index definition.

For example, consider a table called REVIEW that has variables called JOBCODE, BOSSNAME
and RATING and an index defined as:

CREATE UNIQUE INDEX REVIDX ON REVIEW (JOBCODE,BOSSNAME)

SIR/XS Visual PQL 188

A PROCESS ROW to select those records of an employee who was reviewed for job 3 by
Supervisor Jones might be as follows. The retrieval translates the values 3 and JONES as
being values for keyfields JOBCODE and BOSSNAME:

PROCESS ROW REVIEW INDEXED BY REVIDX VIA (3,'JONES')

If multiple keyfields are defined for the table index, leading keyfields must be specified.
Trailing keyfields can be omitted, but intervening keyfields must be specified. If any
entries in the list are out of range or contain missing or undefined values, the valid
portion of the list up to the first undefined value is used. For example, if A, B, and C
represent the keyfields on an index, then:

VIA (A, B, C) is legal
VIA (A) is legal
VIA (A, B) is legal
VIA (,,C) is invalid, needs A and B
VIA (A,,C) is invalid, needs B
VIA (, B, C) is invalid, needs A

SIR/XS Visual PQL 189

ROW IS

[OLD | NEW] ROW IS [tabfile_name.]table_name
 [INDEXED BY index_name (value list)]
 [TUPDATE]
 [CLOSETABLE num_value]
 [AT (block,pos)]

The ROW IS commands access a single row from the specified table. In update mode rows
can be modified or created. Specify update mode with the TUPDATE keyword on the ROW
IS or on the routine command.

tabfile_name.table
name

Specifies the table to access. This table must be connected at
compile time and at run time.

ROW IS Accesses the row specified by the index key specified on the key
field value list. This value list is a list of values matched with key
fields of the index named on the INDEXED BY clause.
When in update mode, a new row is created if it does not exist.
When not in update mode and when an index is not specified, the
first record in the table is accessed.

 OLD ROW IS Accesses the first row of the table or the row specified by the
INDEXED BY clause and its key field value list. If the specified row
does not exist, the block is skipped. A new row is never created.

NEW ROW IS Creates a new row. NEW ROW IS is only allowed in update mode.
If the index specified is a unique index, the block is skipped if the
row exists. If the index is not unique or if an INDEXED BY clause
is not used, a new row is created if not restricted by another
unique index on the table.

 TUPDATE Allows the table to be updated. This keyword is required on ROW
IS blocks that update the table if TUPDATE is not specified on the
PROGRAM or RETRIEVAL command. UPDATE is a synonym.

 INDEXED BY Names the index used for accessing rows.
CLOSETABLE Specifies whether the table is closed when the block is exited. A

value of 0 (zero) or undefined leaves the table open and is the
default. Any other value closes the table. See also the CLOSE
TABLE command.

AT (block,pos) The AT can only be used with the OLD ROW IS construct. It re-
retrieves a row that was previously retrieved from the saved block
and position. These can be got when the row is initially retrieved
with the SYSTEM functions 18 and 19. This allows the program to

SIR/XS Visual PQL 190

exit a block and find the row again even where duplicate keys are
allowed in the index.

SIR/XS Visual PQL 191

ODBC Client
VisualPQL programs can access ODBC data sources (using ODBC) and can directly
access the SIRSQL Server. The VisualPQL program establishes a connection id and a
statement id that are the key identifiers for other operations. It then passes the text of an
SQL query and executes this. The program can enquire as to the columns and rows
available from the query and can get data from each column, stepping through the rows
one at a time.

When using the SIRSQL server to do a query across more than one data source, the
program establishes a connection to the multiple data sources with the same user name
and password.

A program can have multiple connections open at one time. A connection can have
multiple statements. Query results are by connection/statement.

Every command has an ERROR clause that returns a status that indicates success or failure.
The functions return an error code. Further information about the error can be retrieved
by the GETERR function.

SIR/XS Visual PQL 192

CONNECT

CONNECT conid SERVER name {DATABASE name | TABFILE name}
[USER name]
[PASSWORD name]
[PREFIX name] [UPDATE | READ]
[ERROR errid]

Creates a connection to ODBC or to a SIR SQLserver.

conid is a numeric variable that returns an arbitrary number assigned by the system and
subsequently used to identify the connection.

A name as used in various parts of the command is a string expression i.e. a string
variable or a constant enclosed in quotes.

SERVER name is either the string ODBC (must be uppercase) or the TCP/IP address of the
server.

DATABASE name | TABFILE name is the name of the data source as used by ODBC or
the server. This is nothing to do with any databases or tabfiles directly connected by
SIR/XS.

USER name has three possible components. The first is an arbitrary name used to identify
that this connection is one of those associated with a single 'user' (i.e. this program) if a
query is done across multiple connections. If a tabfile is being connected, the second and
third components are used to specify any group and user name for that tabfile. Separate
multiple components by commas.
This is typically blank for non-SIR ODBC sources.

PASSWORD name has four possible components. The first is a password for the connection
associated with a single 'user' (i.e. this program) if a query is done across multiple
connections. If a database is being connected, the second, third and fourth components
are used to specify the database password, the read password and the write password. If a
tabfile is being connected, the second and third components are used to specify any group
and/or user passwords for that tabfile. Separate multiple components by commas.
This is typically blank for non-SIR ODBC sources.

PREFIX is the directory prefix for the SIRSQL server to find the database. If this is not
fully qualified, the SQLSQL Server takes it to apply from its own local directory
structure. If the server is set to ODBC then the prefix ignored as it is already specified in
the data source setup.

SIR/XS Visual PQL 193

UPDATE | READ allow/disallow SQL statements that update the data source. The default
is read.

ERROR errid is a numeric variable that returns a status code. A value of zero or less
indicates that the connection failed.

DISCONNECT conid [ERROR name]

Disconnects the connection.

SIR/XS Visual PQL 194

Statement

STATEMENT statid CONNECT conid [ERROR name]

Creates an arbitrary statement number for a connection that is subsequently used to
identify the statement.

statid is a numeric variable that returns the statement number.

DELETE STATEMENT statid CONNECT conid [ERROR name]

Deletes a statement

PREPARE STATEMENT statid CONNECT conid
{COMMAND text_expression | BUFFER buffer_name}
[ERROR name]

Sends the text of an SQL statement. This can either be a string expression (e.g. a string
variable in the VisualPQL) that contains text up to 254 characters or it can be the name of
a buffer that contains the text of a long SQL statement (up to 4K).

BIND STATEMENT statid CONNECT conid (param_no,value)
[ERROR name]

SQL queries may contain parametised values, that us the value is not specified directly in
the query but separately via a BIND command. A parameter is shown in the SQL query as
a question mark ? e.g.

SELECT * FROM EMPLOYEE WHERE ID EQ ?

If a statement has multiple parameters, they are identified positionally, that is the first
question mark is parameter 1, the second 2, etc.

SIR/XS Visual PQL 195

The BIND supplies values for the parameters. Values may either be numeric or string
expressions. e.g.

BIND STATEMENT statid CONNECT conid (1,10)
BIND STATEMENT statid CONNECT conid (2,'John')

Parameters may be bound before or after a statement is prepared. Parameters may also be
bound using the BINDPARM function.

Because the type (numeric or string) of the parameter is not known at compile time, make
sure it matches the data type of the variable that it applies to. Data for string, categorical
vars, dates and times must be string expressions.

EXECUTE STATEMENT statid CONNECT conid [ERROR name]

This runs the prepared statement and produces a set of output. This might take some time
depending on the size of the data source and the query.

The output can be examined using the VisualPQL Client/Server functions.

Example

PROGRAM
INTEGER*4 errid conid statid rnum cnum
STRING*20 cname colval
STRING*80 qtext errstr
CONNECT conid SERVER 'ODBC'
 DATABASE 'Company'
 USER 'me'
 PASSWORD 'mypwd,COMPANY,HIGH,HIGH'
 PREFIX ''
 ERROR errid
STATEMENT statid CONNECT conid ERROR errid
WRITE errid
PREPARE STATEMENT statid CONNECT conid
 COMMAND 'SELECT * FROM EMPLOYEE'
 ERROR errid
WRITE errid
EXECUTE STATEMENT statid CONNECT conid ERROR errid
WRITE errid
COMPUTE cnum = COLCOUNT (conid,statid)
COMPUTE rnum = ROWCOUNT (conid,statid)
WRITE 'Columns returned ' cnum ' Rows returned ' rnum
FOR I = 1,cnum
. COMPUTE cname = COLNAME (conid,statid,i)
. WRITE cname
END FOR

SIR/XS Visual PQL 196

SET J (0)
LOOP
. COMPUTE j = j+1
. COMPUTE res = NEXTROW (conid,statid)
. IF (res LE 0) EXIT LOOP
. FOR I = 1,cnum
. IFTHEN (COLTYPE(conid,statid,i) eq 1)
. COMPUTE colval = COLVALS (conid,statid,j,i)
. ELSE
. COMPUTE colval = FORMAT (COLVALN (conid,statid,j,i))
. ENDIF
. WRITE colval
. END FOR
END LOOP
DELETE STATEMENT statid CONNECT conid
DISCONNECT conid
END PROGRAM

SIR/XS Visual PQL 197

Graphical User Interface
VisualPQL provides the tools to build a portable and flexible graphical user interface for
your applications.

The top level of the graphical interface is created by a main program that defines the
main window and menu system including all sub-menus. This receives control when a
menu item is selected and can perform an action directly or can invoke other VisualPQL
programs or SIR/XS commands.

Programs can create dialogs that pass control back to the user and receive control back
when the user takes an action such as pressing a button.

The member SYSTEM.START in the system procedure file is the main window program.
Control is returned to this program until it issues an EXIT message and the system then
stops. (N.B. If a different procedure file is specified with the PROC= execution parameter,
it must contain the SYSTEM family and START member.)

Any VisualPQL program can output information into the main window (such as title and
status) and can put text in the window. Programs can also save, print or clear the main
window.

Once the system is running, programs can display and get information through dialogs.
The system has to be active for graphical commands to be executed. Any VisualPQL can
be compiled when the graphical interface is not active (e.g. in batch), but running a
program that uses graphical commands without the main window active returns an error.

Predefined programs can be invoked through menus and any program can create and run
with dialogs. A program that creates a dialog remains active until it issues an EXIT
command.

SIR/XS Visual PQL 198

WINDOW

 Window and menu definition commands and functions can only be used in the initial
main program that creates the main window and menus.

WINDOW

Defines the main window and the start of the system.

END WINDOW

Defines the end of the main window and exits the system.

SIR/XS Visual PQL 199

WINDOW TITLE

WINDOW TITLE text_var

Sets title for main window.

This command can be executed from any program running while the main window is
active i.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 200

WINDOW STATUS

WINDOW STATUS LINE text_var

Puts a message into the status bar in the main window.

This command can be executed from any program running while the main window is
active i.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 201

WINDOW OUTPUT

WINDOW OUTPUT text_var [AT CURSOR] [HTML]

Writes text to the scrolled main window. Each output line is written to the next line in the
window. Specify the keyword AT CURSOR to write to the cursor position (e.g. after
selecting some text). This overwrites any text following the cursor.
Specify the keyword HTML to write text formatted using a subset of standard html tags.
Supported tags are:

"
&
<
>

<p>
 align
 center
 right
 left
<body>
 bgcolor
 tran[sparent]
 #rrggbb
 readonly
 true
 FALSE
 wrap
 off
 ON
<h1>
<h2>
<h3>
<h4>
<h5>
<h6>

<u>
<i>
<sub>
<sup>

SIR/XS Visual PQL 202

<big>
<small>
<code>
<pre>
<center>

 (same as ul)

 color
 #rrggbb
 size
 [+|-]n
 face
 fontname

The WINDOW OUTPUT command can be executed from any program running while the
main window is active i.e. It is not restricted to running in the program that defines the
main window. Note that output from a standard WRITE command that does not specify a
filename also goes to the scrolled main window when running without a default output
file.

SIR/XS Visual PQL 203

WINDOW CLEAR

WINDOW CLEAR

Clears the scrolled main window.

This command can be executed from any program running while the main window is
active i.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 204

WINDOW SAVE

WINDOW SAVE filename

Saves the scrolled contents of main window as a file.

This command can be executed from any program running while the main window is
active i.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 205

MENU

MENU name

Defines a menu block. A subsequent MENU defines a sub-menu. The name is a string
variable or string constant. To define a mnemonic letter precede it by an &. The top level
menu is a horizontal menu, all sub-menus are vertical menus. All menu definition must
be within the WINDOW block.

END MENU

Defines the end of a menu or sub-menu.

SIR/XS Visual PQL 206

MENUITEM

MENUITEM id,name_var,accel_ch,style

Defines a menu item. When this item is selected from the menu by the user, the id is
passed to the processing logic and so it must be unique within all menu items. The name
is a string variable or string constant and can contain an & to define a mnemonic letter.

accel_ch is a one character string variable or string constant containing a single
accelerator character. Blank means there is no accelerator. A lower case letter is
CTRL+letter; an uppercase letter is CTRL+SHIFT+letter. (N.B. This may be machine
specific.)

Style is an integer variable - 0 for not checkable; 1 for checkable. Checkable means that
a menu item can be toggled between two states (checked and unchecked) by the CHECK
ITEM,UNCHECK ITEM commands and tested by function GETMCHK. When a menu item is
checked it has a visual indication (a tick) next to it.

Note The main window can be closed by the user without using a VisualPQL menu item.
When this happens (by using a system facility), the system passes a zero as the id. A
message zero must have the same effect as any menu 'Exit' logic and so use zero as the id
for the menu item associated with exit.

SIR/XS Visual PQL 207

MENUSEP

MENUSEP

Defines a menu separator. This is only valid in pulldown menus and appears as a
horizontal line.

SIR/XS Visual PQL 208

TBARITEM

TBARITEM id,bitmap,tip_text,style

Defines an item on the toolbar.

Bitmap is the name of the bitmap that is the image of the toolbar button.

tip_text is a string variable or constant that is text displayed when the cursor is on the
toolbar. Empty tips are not displayed. These can be defined in any sequence at any
convenient point and the definition sequence determines the sequence across the toolbar.

Style is an integer variable - 0 for not checkable; 1 for checkable. Checkable means that
a menu item can be toggled between two states (checked and unchecked) by the CHECK
ITEM, UNCHECK ITEM commands and tested by function GETMCHK. When an item is
checked, it has a visual indication (button depressed).

Id is an integer value passed to the message procedure. If the id is the same as a
MENUITEM id both must be the same style (checkable, regular) and they are kept
synchronised. (i.e. checking is on or off for both). It is strongly recommended that all
toolbar items are also menu items.

SIR/XS Visual PQL 209

TBARSEP

TBARSEP

Defines a separator (small space) on the toolbar.

SIR/XS Visual PQL 210

INITIAL

INITIAL

Defines an initial message processing block for the menu.

At this point, the system starts and the commands in the initial block are executed.
Processing from this point on is through the message blocks.

SIR/XS Visual PQL 211

MESSAGE

MESSAGE[S] COMMAND id_var

MESSAGE DROPFILE string_var

NEXT MESSAGE

EXIT MESSAGE

END MESSAGE[S]

If a particular type of message processing block is not defined, then messages of that type
are simply ignored.

The MESSAGE COMMAND processing block is the normal message block for menus. This
gets control when the user selects a lowest level menu item. The id of the selected menu
item is passed to the block in the variable named id_var.

The MESSAGE DROPFILE string_var receives control if the user 'drags and drops' a file
into the main window. The name of the file is passed to the block in the string_var
variable.

NEXT MESSAGE returns control to the user.

EXIT MESSAGE finishes processing and, in a menu, stops the SIR/XS session.

END MESSAGE finishes the definition of a message processing block. If the command is
reached during execution, it returns control to the user.

SIR/XS Visual PQL 212

ENABLE MENUITEM
DISABLE MENUITEM

ENABLE MENUITEM id
DISABLE MENUITEM id

Menu items are enabled by default. These commands enable (make selectable) or disable
(grey out) a specified item.

These commands can be executed from any program running while the main window is
active i.e. they are not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 213

CHECK MENUITEM
UNCHECK MENUITEM

CHECK MENUITEM id
UNCHECK MENUITEM id

Menu items are unchecked by default. These commands check (tick) or uncheck a
specific item.

These commands can be executed from any program running while the main window is
active i.e. they are not restricted to running in the program that defines the main window.

The function num = GETMCHK (id) tests the state of a menu or toolbar item. Returns 1 if
checked; 0 if unchecked.

SIR/XS Visual PQL 214

DISPLAY POPUP LIST

DISPLAY POPUP LIST [(string_exp,string_exp,..) |
array_name,no_of_items]
 ANCHOR id | AT row,col
 [POSTYPE num_exp]
 RESPONSE num_varname
 [SEPARATOR (n,n...)]

Displays a pop up menu that remains on the screen until the user either selects an item or
clicks at a point off the menu, thus canceling the menu. This command can be issued in
menus, in standard dialogs or in DEDIT dialogs.

(string_exp,...)|
array_name,no_of_items

The menu consists of a list of entries. These can be defined
either as a list of string expressions in parentheses or as a
string array name followed by the number of items to be
selected from the array. The menu is built with one line per
item.

ANCHOR id | AT row,col The menu is either positioned relative to the control
identified by the ANCHOR id or at the position specified by the
AT clause. If the ANCHOR id is specified, the position of the
menu is determined by the appearance of the current screen
and the menu is positioned relative to the item referenced by
that id in the current menu or dialog.

POSTYPE num_exp If POSTYPE is specified with a numeric expression that
evaluates to 1, then values specified in the AT clause are
absolute positions; otherwise, the AT clause specifies
standard row/col based positions.

RESPONSE num_varname Specifies a numeric variable that is set to the position in the
menu list of the item selected. If no item is selected, the
response variable is set to -1.

SEPARATOR n,n... If specified, displays a menu separator after the nth item(s).

SIR/XS Visual PQL 215

DIALOG

DIALOG title
END DIALOG

Defines a dialog. All dialog definition commands and message processing blocks must be
contained in the DIALOG block. The TITLE must be specified and is a text variable or
string in quotes that is displayed in the title bar of the dialog.

Dialogs have two parts:-

1) The dialog definition that specifies the dialog controls, their positions and order on the
dialog. Controls are labels, buttons, edit fields, etc. that are the visual items that make up
the dialog and allow the user to interact with the system. Each control is identified by a
unique numeric id, that is used to reference the control during the execution of the dialog.
Controls that are not referenced during execution (e.g. labels, lines) can use -1 as the id.

The following commands can be used to define dialog controls:

• POSTYPE
• BORDERS
• BUTTON
• CHECK
• CHOICE
• COMBO
• EDIT
• IMAGE
• LABEL
• LINE
• LIST
• RADIO
• SLIDER
• SPIN
• PROGRESS
• TEXT
• TREE

2) The dialog message processing routines that can be executed each time a message
event takes place. Events include pressing a dialog button, pressing a character key in a
text field, selecting an item in a menu etc.

SIR/XS Visual PQL 216

If a message event occurs and there is no message processing routine for that type of
event, it is ignored.

The optional INITIAL message processing routine is executed before the dialog appears
on the screen.

Message processing routines can perform any appropriate function including creating a
new sub-dialog and executing standard SIR/XS commands with the EXECUTE DBMS
command.

Control is returned to the user by a NEXT MESSAGE command or by reaching the end of
the message processing routine (the END MESSAGE command). This retains the dialog on
the screen.

The EXIT MESSAGE command deletes the dialog from the screen and performs any
commands that follow the END DIALOG command. When the end of the program is
reached, control is returned to any higher level dialog or to the menu system.

If the user exits the dialog using the windowing system (e.g. by clicking on the X button
in Windows), a button message is generated with an id of 0 (zero) so ensure that MESSAGE
BUTTON 0 exits the dialog.

SIR/XS Visual PQL 217

BORDERS

BORDERS

Specifies that the borders of labels, check boxes or radio buttons are displayed. Is only
used when designing a new dialog to establish the positions of controls and to ensure they
do not overlap.

Cannot be switched off once turned on for a dialog.

SIR/XS Visual PQL 218

POSTYPE

POSTYPE (0,1)

Positioning of dialog controls uses a vertical and horizontal system of co-ordinates
starting at 0,0 in the top left. The horizontal units are 1/4 of the average width for the font
being used. The vertical units are by row or by absolute units. The POSTYPE command
changes the vertical units from row to absolute during definition (0 is by row and is the
default; 1 is by absolute units). Absolute vertical units are 1/8 font height. For precise
positioning, dialog metrics can be retrieved with functions.

SIR/XS Visual PQL 219

BUTTON

BUTTON id,row,col,width,default,text

Defines a dialog button. This is a rectangle one row deep that can be clicked by the user
to indicate an action to take. This generates a message event to be handled by a message
processing routine.

ID is a numeric variable or constant that identifies the control.
ROW and COL are numeric variables or constants that define the starting position of the
control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
DEFAULT is a numeric variable or constant. A value of 1 makes this the default button.
TEXT is a string variable or string in quotes and is displayed in the button. To define a
mnemonic letter precede it by an &. The button label is set to this value at definition
time. If you wish to change the label during message processing, use the SET ITEM
command.

SIR/XS Visual PQL 220

CHECK

CHECK id,row,col,width,text

Defines a dialog check control. This is a small square box that the user can toggle (turn
on and off) followed by a label.

ID is a numeric variable or constant that identifies the control. ROW and COL are numeric
variables or constants that define the starting position of the control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
TEXT is a string variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET ITEM
command.

Use CHECK ITEM or UNCHECK ITEM to set the control and the GETICHK function to test the
setting (0 for unchecked, 1 for checked).

SIR/XS Visual PQL 221

CHOICE

CHOICE id,row,col,width

Defines a dialog choice control. A choice control is a box in a single row with an
associated pull down list. This contains values set by the program and the user can choose
one of these. A single value from the list is displayed in the box.

ID is a numeric variable or constant that identifies the control.
ROW and COL are numeric variables or constants that define the starting position of the
control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.

Set the values for the choice control in a message processing block (e.g. in the INITIAL
routine) with the APPEND ITEM or INSERT ITEM commands or manipulate the values with
the REMOVE ITEM, REMOVE ALL and SWAP ITEM commands. Use the GETPOS function to
establish the position of a choice the user has selected or the GETTXT function to return
the text value. If the values are numeric, the GETFLT or GETINT functions can also be
used.

By default, the first item in the list is displayed in the box. Use the SELECT ITEM
command to select a different item to display.

SIR/XS Visual PQL 222

EDIT

EDIT id,row,col,width,pass,read

Defines a dialog edit field. This is a box on a single row and can contain text that can be
set by the program and possibly entered by the user. The user can scroll horizontally if
necessary to enter or view more text than can be displayed in the box.

ID is a numeric variable or constant that identifies the control.
ROW and COL are numeric variables or constants that define the starting position of the
control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
PASS is a numeric variable or constant. If this is 1 then the edit field is password protected
and the data is not displayed but replaced by asterisks (this may vary on certain operating
systems).
READ is a numeric variable or constant. If this is 1 then the data in the control is read only
and the user cannot enter data.

Set the value of an edit control with the SET ITEM command and retrieve data with the
GETTXT function (if the control is supposed to return numeric values, the GETFLT or
GETINT functions can also be used.)

SIR/XS Visual PQL 223

COMBO
 combo id, row, col, width

A ComboBox control is a combination of an edit and a choice control. It is used when
free text can be entered but a set of predefined values also exists.

ID is a numeric variable or constant which identifies the control.
ROW and COL are numeric variables or constants which define the starting position and
depth of the control in vertical units.
WIDTH is a numeric variable or constant which defines the length of the control in
horizontal units.

You can use the same commands and functions as with an edit control or choice control.

SIR/XS Visual PQL 224

SPIN
 SPIN id, row, height, col, width

A Spin or Up/Down control displays a numeric edit box with a pair of arrows. The up
arrow increments the value in the edit control and the down arrow decrements it.

ID is a numeric variable or constant which identifies the control.
ROW, HEIGHT and COL are numeric variables or constants which define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant which defines the length of the control in
horizontal units.

SELECT ITEM and SET ITEM work on the spin control as do the functions SETPOS GETTXT
GETINT and GETPOS

SIR/XS Visual PQL 225

IMAGE

IMAGE id,row,height,col,width,border

Defines a rectangular space for a bitmap image.

ID is a numeric variable or constant that identifies the control.
ROW, HEIGHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.

Set the actual bitmap into the control in a message processing block (e.g. in the INITIAL
routine) with the SET IMAGE command.

SIR/XS Visual PQL 226

LABEL

LABEL id,row,col,width,text

Defines a dialog label that is a single row of text.

ID is a numeric variable or constant that identifies the control. If you specify -1 as the id,
the label text cannot be referenced (retrieved or modified) during the execution of the
program.
ROW and COL are numeric variables or constants that define the starting position of the
control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
TEXT is a string variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET ITEM
command.

SIR/XS Visual PQL 227

LINE

LINE id,row,height,col,width

Draws a box or line. The horizontal lines in a box are offset vertically so that they can
enclose other controls if necessary. However a line (height of 1) takes a standard row
position.

ID is a numeric variable or constant that identifies the control.
ROW, HEIGHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.

SIR/XS Visual PQL 228

LIST

LIST id,row,height,col,width,type

Defines a dialog list control. A list control is a box in multiple rows. This contains values
set by the program and the user can choose one (or more) of these. Selected items are
highlighted. If there is insufficient room to display all values, the user can scroll
vertically.

ID is a numeric variable or constant that identifies the control.
ROW, HEIGHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
TYPE is a numeric variable or constant with the value 0, 1 or 2. These define the type of
selection that the user can make from the list control as follows:-

• 0 Single - One and only one item can be selected. If the user clicks on a second
item, the first is deselected.

• 1 Extend - Usually one item but more can be selected. If the user simply clicks on
a second item, the first is deselected. However the user can select multiple items
by using the shift key when selecting.

• 2 Multiple - Multiple items can be selected. If the user clicks on a second item, it
is selected. If the user clicks on a previously selected item, it is deselected.

Set the values for the list control in a message processing block (e.g. in the INITIAL
routine) with the APPEND ITEM or INSERT ITEM commands or manipulate the values with
the REMOVE ITEM, REMOVE ALL and SWAP ITEM commands. Use the GETPOS function to
establish the position of a choice the user has selected and the GETITXT function to return
the text value. If the values are numeric, the GETIFLT or GETIINT functions can also be
used.

SIR/XS Visual PQL 229

RADIO

RADIO id,row,col,width,text

Defines a dialog radio control. A radio button is very similar to a check box except that it
is round and that it may be in a group. A series of radio definitions without any other type
of control constitutes a group. In a group of radio buttons, if the user checks one button,
then automatically any other checked button is unchecked.

ID is a numeric variable or constant that identifies the control.
ROW and COL are numeric variables or constants that define the starting position of the
control.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
TEXT is a string variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET ITEM
command.

Use CHECK ITEM or UNCHECK ITEM to set the control and the GETICHK function to test the
setting (0 for unchecked, 1 for checked). If the program checks a radio control in a group,
there is no automatic unchecking of other controls in the group.

SIR/XS Visual PQL 230

SLIDER

SLIDER id,row,height,col,width

Defines a dialog slider control. A slider control is a horizontal representation of a
percentage scale (0 to 100) that the user can move left or right to indicate an
increase/decrease. It can be set and moved programmatically.

ID is a numeric variable or constant that identifies the control.
ROW and COL are numeric variables or constants that define the starting position of the
control.
HEIGHT is a numeric variable or constant that defines the height of the control in vertical
units.

WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.

Set the values for the slider control in a message processing block (e.g. in the INITIAL
routine) with the SET ITEM using values between 0 and 100. Use the GETPOS function to
establish the position of a slider the user has manipulated.

SIR/XS Visual PQL 231

PROGRESS

 A Progress control displays a read only progress meter.

PROGRESS id, row, height, col, width

ID is a numeric variable or constant which identifies the control.
ROW, HEIGHT and COL are numeric variables or constants which define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant which defines the length of the control in
horizontal units.

If Height is greater that width then the bar is drawn vertically, otherwise it is horizontal.

Use the SETRANGE function to define the maximum and minimum values for the bar and
SETPOS and GETPOS to set and get the position of the progress bar within the control.

The Progress bar is a read only control and does not send any messages to the dialog
program.

SIR/XS Visual PQL 232

TEXT

TEXT id,row,height,col,width,read

Defines a multi-line text control. This is a rectangular box that can display text and can
allow the user to edit text. The user can scroll horizontally and vertically as necessary.

ID is a numeric variable or constant that identifies the control.
ROW, HEIGHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
READ is a numeric variable or constant with values 0 or 1. 0 allows the user to edit data; 1
means that the data is read only and cannot be edited.

Set the values for the text control in a message processing block (e.g. in the INITIAL
routine) with the APPEND LINE or INSERT TEXT commands. Use the GETLTXT function to
return the text values line by line.

SIR/XS Visual PQL 233

TREE

TREE id,row,height,col,width,read

Defines a tree control that is a window that displays a hierarchical list of items, such as
the headings in a document, the entries in an index, or the files and directories on a disk.
This is a rectangular box that can display text and can allow the user to edit text. The user
can scroll horizontally and vertically as necessary.

ID is a numeric variable or constant that identifies the control.
ROW, HEIGHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.
WIDTH is a numeric variable or constant that defines the length of the control in horizontal
units.
READ is a numeric variable or constant with values 0 or 1. 0 allows the user to edit data; 1
means that the data is read only and cannot be edited.

Set the values for the tree control in a message processing block (e.g. in the INITIAL
routine) with the BRANCH function. Use the information passed by the standard message
processing block to identify nodes selected by the user.

The following commands and functions are used with tree controls:
BRANCH Adds a new node to a tree. The node is added as a child node of the given parent
node.

BRANCHD Deletes the node from a tree.

NBRANCH Returns the number of child nodes of the given node.

BRANCHN Returns the node number of the nth child nodes of the given node.

The following list commands also work on tree controls. Note that pos is not the ordinal
position of the tree item but the user supplied node number.
SELECT ITEM id,pos
REMOVE ITEM id,pos
REMOVE ALL id
GETTXT(id)
GETITXT(id,pos)
GETPOS(id)

SIR/XS Visual PQL 234

Dialog Message Processing
 INITIAL
END INITIAL

If you specify an INITIAL message processing routine, it is executed before the dialog
appears on the screen. This can be used to populate lists and set the initial default state of
controls.

MESSAGE[S] type id,arg1,arg2
END MESSAGE[S]
Messages are generated by a user action and are passed to the appropriate message
processing block. If there is no appropriate message processing block, the message is
ignored.

TYPE determines which messages are processed by the block and is one of the following
keywords:
ALL, BUTTON, CHECK, CHOICE, EDIT, LIST, RADIO and TEXT.

If ALL is specified then do not specify any other message processing blocks. Otherwise
you may specify one of each type. Specify either ALL or BUTTON and include appropriate
logic to exit the dialog when a button message with an id of zero is received.

Every message processing routine specifies a numeric variable that is set to the id of the
control that generated the message.

arg1 and arg2 are variables on some types of messages. Ensure that the correct number
of variables (none, one or two) are specified for the appropriate message type. The values
in the specified variables are set depending on the type of message processing block and
contain frequently needed data for the type of control. However, this data can also be
retrieved by functions if necessary (e.g. when using an ALL message processing routine).
The following describes the arguments passed for each message type:-

ALL id,position,dbl_click Position is a numeric variable and is set to the position in
a list or choice if appropriate. Dbl_click is a numeric variable that is set to 0 or 1 where 0
means a single mouse click and 1 means a double mouse click.

BUTTON id Has no further arguments.

CHECK id, check Check is a numeric variable that is set to 0 or 1 where 0 means
unchecked and 1 means checked.

CHOICE id, position Position is a numeric variable and is set to the position in the
choice list.

SIR/XS Visual PQL 235

LIST id, position, dbl_click - Position is a numeric variable and is set to the
position in the list. Dbl_click is a numeric variable that is set to 0 or 1 where 0 means a
single mouse click and 1 means a double mouse click.

RADIO id, check Check is a numeric variable that is set to 0 or 1 where 0 means
unchecked and 1 means checked.

EDIT id, hastext Hastext is a numeric variable that is set to zero if there is no text in
the control and to a positive value if there is text.

TEXT id, line,position Line and position are set to the line and position of the cursor
when text is entered. Line is set to zero if there is no text in the control.

Once the appropriate actions have been taken, control is returned to the dialog either by
issuing a NEXT [MESSAGE] command or by reaching the end of the block. This dialog
remains active until a message processing block issues a EXIT [MESSAGE] command that
closes the dialog.

Other Message Types

 There are three message types that are not processed by MESSAGE ALL and you must
specify the message processing block explicitly if you need to process these messages.
The messages are:

MESSAGE FOCUS id
MESSAGE HELP id
MESSAGE TIMER
MESSAGE FOCUS
id

This message is generated every time focus moves off a dialog item. id
is the id of the control moved away from. Use the GETFOCUS function
to return the id of control moved to.

MESSAGE HELP
id

When this message is specified, a small ? is displayed in the top right
corner of the dialog. If the user clicks on this, it becomes a floating ?
and the user can position this to a control to request help. When the
user clicks again, a message is passed to the MESSAGE HELP block to
display appropriate help for the identified control.

MESSAGE TIMER This message processing block receives messages that are
automatically generated. This could be used to refresh the display of
some image or animation.

Use the ENABLE TIMER n command to start automatic generation of
timer messages every n tenths of a second. Use the DISABLE TIMER
command to stop generation of timer messages.

SIR/XS Visual PQL 236

Dialog Control Commands

 The following commands can be used within a message processing block
while a dialog is active. id is a numeric variable or constant. pos is a numeric variable or
constant.

ENABLE ITEM id
DISABLE ITEM id
Enables and disables (greys out) a control.

FOCUS ITEM id
Sets the focus on to the control.

SHOW ITEM id
HIDE ITEM id
These two commands alter the appearance of the dialog while it is active. Items can be
hidden and other items shown. Items can thus appear to be on different pages within a
dialog or emulate tabbed dialogs.

SET DIALOG TITLE string
Sets the dialog title, enabling different pages within a dialog to have appropriate titles.

CHECK ITEM id
UNCHECK ITEM id
Checks a radio button or check box. If the user checks a radio button, all others in that
group are unchecked by the system. If a radio button is checked by a program, the
program must uncheck all others in the group.

SET ITEM id,var
The var may be text, integer or floating point and the command sets this value as the
label for label, button, check and radio and as data for edit. Sets a multi-line edit control
to one line containing the value specified in the variable (that may be a null string).

SET ITEM FONT id,bold,italic,underline,size,face
This command changes the appearance of text in a label, edit, button, list or text box.
The bold, italic and underline can be zero or one to turn these font attributes off or
on. The size is zero or +/-1. 1 makes the size of the font larger than current, -1 makes the
size of the font smaller than current and 0 does not change the size (executing the
command several times with a +/-1 changes the size progressively).
The face is a string and can be either a font name or a colour code. The colour codes are
in the form [#RRGGBB][/#RRGGBB] where the first code sets the foreground colour and
the second code sets the background colour. Specify the colour using exactly six
characters; valid characters are 0 to 9 and A to F. These are three sets of hexadecimal
specifications of the strength of the red, green and blue components of the colour. Each

SIR/XS Visual PQL 237

setting has a value from 00 to FF. Either component can be omitted completely. Execute
the command twice to specify both a font name and colour. Note that you cannot specify
the colour of a button.

Example: SET ITEM FONT IDTEXT,1,0,0,0,"#FF0000/#FFFFFF" sets the font of
IDTEXT to be bold with foreground red and background white.

SELECT ITEM id,pos
Selects an item in a list. (Unselects other item in choice or list if single selection)

CLEAR SELECT ITEM id,pos
Clears selection.

SELECT ALL id
Selects all items in multiple selection.

CLEAR ALL id
Clears selection for all items in multiple selection.

APPEND ITEM id,var
Adds an item to choice or list. The var can be text, integer or floating point.

INSERT ITEM id,pos,var
Inserts an item at position in choice or list. The var can be text, integer or floating point.

SWAP ITEM UP,DOWN id
Swaps current item in list with one above.

REMOVE ITEM id,pos
Removes an item from choice or list.

REMOVE ALL id
Removes all items from choice or list.

SET IMAGE id,filename [type]
Puts an image from graphical file (windows or OS/2 bitmap) into a defined image or
button control. If the type number is specified for an image control it can either be 1 or 2
to centre or resize the image to fit the control.

APPEND LINE id,var [HTML]
Adds a text line to a multi-line text control. Specify the keyword HTML to write text
formatted using a subset of standard html tags. Supported tags are listed on the WINDOW
OUTPUT command.

INSERT TEXT id,var
Inserts text into multi-line control at cursor position. The var can be text, integer or
floating point.

SIR/XS Visual PQL 238

Other GUI Commands
BEEP
 Issues a short beep (displaying an error box beeps automatically).

DISPLAY TIPBOX str
 Pops up a message. str is a string variable or string constant in quotes that is the
message to display.

DISPLAY INFOBOX str
 Displays a message in a dialog with an OK button. str is a string variable or string
constant in quotes that is the message to display.

DISPLAY ERRBOX str
 Displays an error message. str is a string variable or string constant in quotes that is the
message to display.

DISPLAY OKCANBOX str RESPONSE var
 Displays a message and asks for an OK or Cancel response. str is a string variable or
string constant in quotes that is the message to display. var is a numeric variable that
receives 1 (OK) or 0 (Cancel).

DISPLAY YESNOBOX str RESPONSE var
 Displays a message and asks for a Yes or No response. str is a string variable or string
constant in quotes that is the message to display. var is a numeric variable that receives 1
(Yes) or 0 (No).

DISPLAY YNCBOX RESPONSE var
 Displays a Yes, No, Cancel Box. var is a numeric variable that receives 1 (Yes) or 0
(No) or -1 (Cancel)

DISPLAY TEXTBOX label [SECRET] RESPONSE var, mess_text
 Displays a text input box. label is a string variable or string constant in quotes that is
displayed as the title on the box. This normally indicates to the user what is being asked
for. var is a numeric variable that receives -1 (Cancel) or length of string. mess_text is a
string variable that is set to the value of the text entered by the user. SECRET is a keyword
that means that the text is echoed back as ***.

DISPLAY OPENBOX title,filter,ext,exists RESPONSE var,mess_txt
 Displays a file browse box. title is a string variable or string constant in quotes that
is displayed as the title of the box.
filter is a string variable or string constant in quotes in format Type|mask e.g. List
files|*.lis|All files|*.*|
ext is a string variable or string constant in quotes and is the file extension in lower case
without a leading period.

SIR/XS Visual PQL 239

exists is a numeric variable or constant. 1 means the file must already exist; 0 allows a
new file to be created; -1 means that the command returns a directory name instead of a
filename.
var is a numeric variable that receives 0 (Cancel) or length of string. mess_text is a
string variable that is set to the value of the filename selected or entered by the user.

DISPLAY SAVEBOX title,filter,ext,overwrite RESPONSE var,filename
 Displays a Save As file box. title is a string variable or string constant in quotes that is
displayed as the title of the box.
filter is a string variable or string constant in quotes in format Type|mask e.g. List
files|*.lis|All files|*.*|
ext is a string variable or string constant in quotes and is the file extension in lower case
without a leading period.
overwrite is a numeric variable or constant. If this is 1 then, if the file already exists the
user is prompted for permission to overwrite; if 0, then an existing file is simply
overwritten.
var is a numeric variable that receives 0 (Cancel) or length of string. mess_text is a
string variable that is set to the value of the filename selected or entered by the user.

PRINT filename [DEFAULT] [MARGINS l,r,t,b] [FONT n]
[WRAP|PAGE|TRUNCATE]
 Prints a text file. filename is a string variable or string constant in quotes and is the
operating system filename not a SIR/XS internal file attribute.
If the DEFAULT keyword is specified printing commences immediately, otherwise a Print
box to alter print specifications is displayed.
MARGINS are in mm and defaults are 25 left, right 20 top, bottom.
FONT is in points with a default of 10.
WRAP, PAGE and TRUNCATE specify the way long lines are handled. Wrap splits the long
line over several print lines; Page will print long lines on separate pages and Truncate
will only print that part of the line that will fit on the page.

INVOKE DDESIGN filename
 Invokes the Dialog Designer. filename is a string variable or string constant in quotes
and is the operating system filename not a SIR/XS internal file attribute. The file should
be a file saved by the dialog designer.

SIR/XS Visual PQL 240

DEDIT

DEDIT type,id,arg1,arg2
END DEDIT

The DEDIT dialog editor is a full screen dialog that allows the program and user to
interact to place controls of various types and to visually edit these controls. The dialog
visually resizes to accommodate controls. This is the basis for the dialog painter and
PQLForms painter and can also be used to develop custom painting style applications.

Controls are placed on the dialog through commands and functions rather than through
any definitions. There is no separate message definition command. Control is returned to
this block each time a message is generated.

The command requires the specification of four numeric variables. These variables return
the message type, the id of any control and two arguments, either x (across the screen)
and y (down the screen) co-ordinates or width and height of the control on a size
message.

Message types are as follows:

Value Message id arg1 arg2
 0 Initial 0 0 0
 1 Exit 0 0 0
 2 Key key 0 0
 3 Rclick id x y
 4 Ctrl-D 0 0 0
 5 Move id x y
 6 Resize id w h
 7 Del id 0 0
 8 Dblclick id 0 0
 9 F9 0 0 0
10 F5 0 0 0
11 F1(Help) 0 0 0
12 Ctrl-Z(Undo) 0 0 0

Initial is sent after the dialog editor window has been created, but before it is made
visible. The program can put the initial set of controls into the editor.

SIR/XS Visual PQL 241

Exit is sent when the user tries to close the dialog editor. The program needs to exit the
dialog to actually stop the editor.

Rclick is sent when the user right clicks the mouse. If the mouse is positioned on a
control, the control is selected (if not already selected) and the id is passed, otherwise any
selected control is deselected and id is set to zero. X and Y position is passed.

Move and Resize are sent as the user moves/resizes a control. The program should just
accept the new position or size and do nothing else. If a group of controls is
moved/resized as a single operation, the program receives separate messages for each
control. The program must not interact with the user nor change the editor's control set
while processing this message.

Dblclick is sent when the user quickly left clicks the mouse twice. If the mouse is
positioned on a control, the control is selected and id is passed, otherwise any selected
control is deselected and id is set to zero.

Help is sent when the user presses F1. The application should display appropriate help.

Other messages are passed when the user presses various keys. It is up to the individual
application to assign meanings to these. An application typically uses the DISPLAY POPUP
LIST command to offer the user a set of appropriate actions to take e.g. to insert a control,
to copy a control, etc. on given messages. The Rclick passes co-ordinates so is
appropriate for inserting a new control at a given position.

The following keys are enabled during a DEDIT dialog:

Key
ESC No Message - Unselects if one or more
controls are selected
TAB No Message - Selects next

 Message id arg1 arg2
Shift+Esc Exit 0 0 0
Esc (None Selected) Exit 0 0 0
Arrow (Selected Item(s)) Move id x y
Shift+Arrow " Resize id w h
Ctrl+Arrow " Fine Move id x y
Ctrl+Shift+Arrow " Fine Resize id w h
Delete Delete id 0 0
Return or Space Dblclick id 0 0 (id is zero if
none selected)
Ctrl+Z Undo 0 0 0
D Ctrl-D 0 0 0
F1 Help 0 0 0
F2 Rclick 0 0 0
F5 F5 0 0 0
F9 F9 0 0 0
Insert Key 0 0 0

SIR/XS Visual PQL 242

The following keys (or Ctrl-key) have mnemonics to associate with control types
if required

L:[Label] Key 1 0 0
E:[Edit] Key 2 0 0
B:[Button] Key 3 0 0
K:[Check] Key 4 0 0
R:[Radio Button] Key 5 0 0
C:[Choice] Key 6 0 0
M:[List] Key 7 0 0
T:[Text] Key 8 0 0
H:[Horizontal Line] Key 9 0 0
V:[Vertical Line] Key 10 0 0
S:[Box] Key 11 0 0
I:[Image] Key 12 0 0

Note The dialog editor is not reenterable. You cannot start a second instance while the
first one is active.

INSERT DCONTROL

INSERT DCONTROL id,type,x,y,w,h,text

Inserts a control on a DEDIT dialog. Control types are as follows:

LABEL 1
EDIT 2
BUTTON 3
CHECK 4
RADIO 5
CHOICE 6
LIST 7
TEXT 8
HLINE 9
VLINE 10
LBOX 11
IMAGE 12

Positioning of dialog edit controls uses a horizontal (x) and vertical(y) system of co-
ordinates starting at 0,0 in the top left. The horizontal units are 1/4 of the average width

SIR/XS Visual PQL 243

for the font being used. The vertical units are 1/8 font height. See POSTYPE to use these
same units in standard dialogs.

Height and width use the same units. Height is irrelevant to control types 1 to 6. Various
controls have minimum height and/or width limits. A height of 12 and a width of 32 is
sufficient for all control types.

The text is displayed in an appropriate place for the control and should be helpful to the
user to identify the control in some way.

MODIFY DCONTROL

MODIFY DCONTROL id,x,y,w,h,text

Modifies the position, size and text of a control on a DEDIT dialog. The control type
cannot be modified.

MODIFY DCONTROL FONT

MODIFY DCONTROL id,bold,italic,underline,size,font/colour

Modifies the font of a control on a DEDIT dialog. The specifications for the font are the
same as SET ITEM FONT.

REMOVE DCONTROL

REMOVE DCONTROL id

Removes a control from a DEDIT dialog.

SELECT DCONTROL

SELECT DCONTROL id

SIR/XS Visual PQL 244

Selects a control on a DEDIT dialog. The user can do this interactively without program
intervention.

CLEAR DCONTROL

CLEAR DCONTROL id

De-selects a control on a DEDIT dialog. The user can do this interactively without
program intervention.

DEDIT MESSAGE

DEDIT MESSAGE text_exp

Displays a text message in the message area at the bottom of a DEDIT dialog. The current
position, size and id of any selected control are automatically displayed alongside the
message area.

SIR/XS Visual PQL 245

GRID

GRID title_string_exp
 list_of_arrays (1 or 2 dimension)
 [HEADERS=(list_of_col_headers)]
 [RESPONSE = integer_varname|
 array_varname]
 [SIZE=rows]
 [DISPLAY=row,width]
 [UPDATE | NOUPDATE]

The GRID command displays data in a spreadsheet format and can be used to display
arrays of data and to accept back changes. The grid is a dialog with predefined buttons
and a grid of data. The columns are array variables; the rows are occurrences in the array.
The grid displays very quickly and essentially has no size limitations beyond those
imposed by processing very large arrays.

title_string_exp A string expression (e.g. 'My Data') that is displayed as the title of
the dialog.

array_name,
array_name,
...

A list of array variables of one or two dimensions. The first dimension
represents the number of rows of data. If the variable has a second
dimension, this is taken as multiple columns. The following example
displays 20 rows and 5 columns:

INTEGER*4 ARRAY MYARRAY (20)
INTEGER*4 ARRAY MYARRAY1 (20,4)
GRID 'Example' myarray, myarray1
Variables can be any type. Maximum total number of columns is 256.

HEADERS=
(heading,
heading, ...)

A list of string expressions that are used as column headings. The
position in the list corresponds to the column. The default heading is
the variable name. The default headings for columns defined by a two
dimensional array is the variable name for the first occurrence, then the
variable name and subscript value for subsequent occurrences.

RESPONSE =
integer_varname|
array_varname

Either a single integer variable that contains 0,1 or -1 or a two
dimensional array that contains 0,1 or -1 in each element. 0 means
not updated; 1 means updated; -1 means an error occurred. If rows
are deleted, then the array is shorter and response values after the

SIR/XS Visual PQL 246

end of the new array size are set to missing.
SIZE=rows Number of rows available to the user. The default is the first dimension

of the smallest array being used (including any response array). If the
user chooses to insert rows, the dimension of all arrays must be large
enough to allow the insertion.

DISPLAY =
row, width

Number of rows and width of visible grid. Rows must be between 10
and 50; width between 50 and 150 characters. The default is 10 rows,
80 characters.

UPDATE |
NOUPDATE

Whether the user is allowed to update the data. The default is UPDATE.

SIR/XS Visual PQL 247

PQLForms Overview
 PQLForms is a set of commands that extend VisualPQL allowing you to create and run
sets of linked, interactive screens for data entry, retrieval and update. A complete set of
screens is a single VisualPQL routine known as a Form.

A Form can be created and maintained completely through the Forms Painter and this is
the recommended way to develop forms. However, it may be necessary to use PQLForms
commands and this chapter describes the various commands available.

The PQLForms commands define what variables are on each screen or page of a screen,
how they are displayed and edited, how the screen is to look, and how screens are linked
together. A PQLForm has built in buttons and associated logic to allow the user to
navigate through a set of records and to display, edit and insert data according to the
database description. A developer can use all standard VisualPQL commands as
necessary and these are executed at appropriate places in the form.

A PQLform can be re-compiled every time it is used or the compiled version of the form
can be saved as an executable member on the procedure file. A PQLForm can also be
compiled and saved as a sub-routine and can then be executed as part of another
PQLform or standard retrieval. A PQLform is run in the same way as any other
VisualPQL routine either directly or from a menu.

Once a form has been developed, it can be used by many people for data entry or for
querying data.

A default form can be generated for a database and can be used directly to view, create,
or delete records.

Form Structure

A form definition consists of a set of commands, each of which may have various
clauses. Normal VisualPQL syntax rules apply.

The form definition starts with the FORM command. This is similar to a
RETRIEVAL/PROGRAM/SUBROUTINE command and can take all relevant clauses as per
those commands plus PQLForms specific clauses. There are no required clauses on a
FORM command. The entire form definition is terminated by the END FORM command.

The FORM command may be followed by any standard VisualPQL commands, (for
example defining any local variables) and then optionally a CALL SCREEN command that
transfers control to the named screen. The first SCREEN command begins definition of a

SIR/XS Visual PQL 248

screen. All further commands are in a screen definition. Definition of a screen is
terminated by the END SCREEN command. Commands in the screen define the set of fields
that are displayed; these can be split into a number of separately displayed pages if
necessary.

A form can contain any number of screens. Screens are linked to other screens with the
CALL SCREEN command so that the user or the application can pass control at appropriate
points. A single screen can be called from any number of different screens.

The standard VisualPQL commands up to the first SCREEN or CALL SCREEN command are
executed and then execution starts with the first screen or called screen.

This keyword MENU, RECORD or TABLE on the SCREEN command specifies the type of
screen being defined:-

• Menu screens are independent of any database record or table. They can act as a
table of contents with a choice as to where to go next.

• Record screens relate to database records. These display data and can be used to
enter new data and modify existing data.

• Table screens relate to tables on tabfiles. These display data and can be used to
enter new data and modify existing data.

Within each screen, further commands are used to describe the components of the screen
and their individual behaviour and appearance. The most common of these is the FIELD
command. This defines an individual variable, possibly displaying it on the screen
allowing the user to retrieve data and maybe update data. Default formats and edit rules
from the data dictionary are applied automatically. There are clauses on this command to
extend the edit rules and alter the position or format of the data.

A form has a structure similar to the following:

FORM
. SCREEN RECORD record_name
. FIELD field_name
. FIELD field_name
. CALL SCREEN record__name1
. END SCREEN
. SCREEN RECORD record_name1
. FIELD field_name
. FIELD field_name
. END SCREEN
ENDFORM

A very simple form definition (on the example COMPANY database) might be:

form
. screen record EMPLOYEE

SIR/XS Visual PQL 249

. field id

. field name

. field currpos

. call screen OCCUP

. end screen

. screen record OCCUP

. field id

. field position

. field startsal

. end screen
end form

Position on the screen

By default, each defined element is displayed one row down and in the same column as
the previous element. The display position can be explicitly specified with the AT clause
on the command that specifies the element.

The visual size of the screen is determined by the maximum position taken by any
display element plus space for buttons and an area to display messages. There is no
absolute maximum row and column size and it is possible to create screens that are too
big to view all at once. There is a default font face, color and size of characters. These
can be altered and specific colors/sizes/fonts can be used.

Examples

There are a number of example forms in the family EXAMPLE on the example COMPANY
database. These are named FORMnnnn and contain comments as to the various features
that they illustrate.

Commands
 The following commands can only be used in a PQLForm:

FORM

Begins the definition of a form.

SCREEN

Begins a set of commands for a screen.

PAGE

Defines a page of fields within a screen. A page shares data and logic with all
other pages in that screen. It is a means to display and input data that belong to a
single record or table but is too large to display on a single screen. Fields are
automatically split into pages where necessary.

SIR/XS Visual PQL 250

FIELD

Defines a field. Fields are always within a screen.

GENERATE

Creates a default set of fields from the schema.

CALL SCREEN

Passes control from one screen to another.

ABUTTON

Equivalent to the user pressing a button except the action is taken under program
control.

FBUTTON

Sets the display position of a forms standard button or defines a user button and
the code that is executed when it is pressed.

FDISPLAY

Displays text, lines, boxes or images on the screen.

END SCREEN

Defines the end of a previous screen.

END FORM

Defines the end of the form.

Specifying VisualPQL in PQLForms

There are three general places in a screen definition where standard VisualPQL can be
used.

Execution Clauses

Some clauses on PQLForms commands allow standard VisualPQL commands that are
then executed at specific points in the form execution. Where VisualPQL commands can
specified as part of a PQLForm clause, enclose the complete set of commands in brackets
() and use a semi-colon ; after a command to indicate the start of a new command. For
example, the FIELD command has the EDITIN and EDITOUT clauses that allow the
specification of commands to transform data as it is read from the screen or displayed. :

SIR/XS Visual PQL 251

FIELD SALARY EDITOUT (fieldout = pformat(salary,'$zzzz.zz'))
 EDITIN (if (sbst(fieldin,1,1) eq '$') fieldin =
sbst(fieldin,2,len(fieldin)-1);
 salary = numbr(fieldin);
 ifthen (salary lt 1000);
 failmess = 'Salary too low';
 failfld = 1;
 fi)

Condition Clauses

Some clauses on PQLForms commands allow the specification of conditions. Where a
single, standard VisualPQL condition can specified as part of a PQLForm clause, again
enclose it in brackets (). A condition must eventually resolve to true or false and cannot
extend over multiple commands. For example, the FIELD command has the IF clause that
determines whether the field is enabled or disabled (greyed out).

FIELD SALARY prompt 'Salary:' IF (EDUC EQ 1)

Intermixed commands

Standard commands can also be intermixed with PQLForms FIELD commands. The
commands are executed when the user presses ENTER as follows:-

• Commands before the first FIELD command are executed whenever the user
presses Enter.

• Commands after a FIELD command are executed when a user is positioned on that
field and presses Enter (with a valid value) after the value from the screen is put
into the variable but before the screen is redisplayed.

The VisualPQL can perform any standard VisualPQL function including record access,
calling subroutines, displaying sub-dialogs, etc.

Predefined Variables

To allow easy communication between the predefined PQLForms logic and user
specified standard VisualPQL, certain predefined variable names have been used:-

FAILFLD A numeric variable that can be set by commands that check a specific
field as it is entered. A value of zero (0) is the default and means
accept the field; a positive value means warn the user that the field has
failed validity tests but they have the option to accept it; a negative
value means the field has failed validity tests and is not accepted. The
absolute numeric value has no specific meaning. The standard error
message used if FAILFLD is not zero is number 57 'Failed Edit tests'
and this can be overridden by setting a value in FAILMESS.

SIR/XS Visual PQL 252

FAILMESS A string variable set by commands to the text of the message to display
for a test that fails. If a positive FAILFLD or FAILSCR code is set, the
text 'OK to save?' is appended to the message.

FAILSCR A numeric variable set by commands that check record validity.
During field processing or in the WRITE clause, a zero value accepts the
update and is set by default. A positive value means the user has the
option to accept the update after a warning. A negative value means the
update is not done. The absolute numeric value has no specific
meaning. The standard error message used if FAILSCR is not zero is
number 110 'Record failed write tests'.
If a SELECT clause is specified on the SCREEN command, this can set
FAILSCR to a non-zero value to indicate that the record should be
skipped.

FIELDIN A string variable used as the starting point for data from the screen for
any EDITIN commands to check or transform when the user presses
Enter on that field.

FIELDOUT A string variable used as the result of any EDITOUT commands to
display the field on the screen.

Help

 If the user requests help on a field (by clicking on the question mark from the top of the
dialog and positioning it on a field or by pressing F1 on the field), a pop-up box is
displayed with any defined help text. Define help text for a field with the HELP clause
followed parentheses enclosing any standard PQL expression that resolves to a string.
The expression can be a simple string constant in quotes or a concatenated string. To
display multiple lines in the pop up box, concatenate char(13) as a line break character.
For example:

FIELD BIRTHDAY
 PROMPT 'Date of Birth'
 HELP ('Enter as MMM DD, YYYY' + char(13) +
 'For example: May 24, 2001')

If there is no defined help text for a field, nothing is displayed i.e. no box is popped. If
there is no help text for any fields, the question mark is suppressed.

Error Messages

 Error messages are displayed on the status line with a number in parentheses following
the message. A full listing of the error messages is contained in Messages. Error
messages can be altered to reflect the needs of specific projects by specifying an ERROR
clause for the error message number at any level (form, screen, field). This replaces the
default error message for everything within that level. For example:

SIR/XS Visual PQL 253

FIELD SSN
 ERROR 47 'Social security number is in the wrong format'

In this example, error message 47 "Not a valid value", is replaced by the message "Social
security number is in the wrong format" if a user makes an error.

SIR/XS Visual PQL 254

Using PQLForms

 Run PQLForms as per any other VisualPQL program from the SIR/XS menus. Any
database or tabfile required by a form must be connected.

Every PQLForm screen has a set of buttons that take standard actions. These buttons vary
according to the type of screen but all include an Exit button to return one level.
Typically screens also have various fields for the display and entry of data. Error
messages are displayed at the bottom of the screen.

Each data field can have up to three visual elements: a prompt, a data area to enter or to
display the data and the set of value labels displayed as a pull down choice list. When a
screen is initially displayed, fields may already have data in them or the fields may be
blank waiting for data to be entered or a record to be retrieved.

To enter data into a field, type in the data and press Enter. To skip over fields, use the
Tab keys or position to a field with the screen cursor using a mouse or other pointing
device. Shift-Tab goes back a field, Tab goes forward a field. Tab does not process the
data nor execute any VisualPQL associated with the field.

Field Editing Operations

When positioned to a data entry field, edit the contents of the field if necessary. Left
Arrow and Right Arrow position the cursor within the field. The data in a field may be
longer than the display space and is scrolled horizontally as characters are typed or the
arrow keys are used.

Keys to edit the field are the normal keys for the GUI being used. On Windows systems,
Del deletes the next character, Ctrl-Del deletes the whole field; Ctrl-C cuts highlighted
characters, Ctrl-V pastes cut characters, Ctrl-Z restores the previous edit, etc.

Press Enter to process the data in a field and move to the next field. If you update a field
but do not press Enter, the edits have no effect.

Moving from screen to screen

 A form often consists of multiple screens, one per record type or table. A screen is a
single logical entity that may be split into several pages if the data does not fit on a single
display screen.

If a screen is on multiple pages, the Page Down button moves to the next page; the Page
Up button moves to the previous page. The title of the screen changes to indicate the
current page.

SIR/XS Visual PQL 255

To call a screen, press the appropriate button. The Exit button returns to the calling
screen. Lower level screens can call other screens and screens may be nested as deeply as
necessary.

Accessing Records and Rows

Key fields identify the record or row and are usually the first fields at the top of the
screen. Key fields must be specified on a screen. If the complete set of key fields is not
specified, a warning is given at compile time and the missing key fields are automatically
added as the last fields on the screen.

There are buttons to browse through sets of records:-

• First retrieves the first record;
• Last retrieves the last record;
• Next and Previous go through the set of records one at a time in the specified

direction. If no more records are available in the set, a message is displayed.

If the screen is a top level screen, (it has not been called by another screen) then the set of
records is all of the records of that type in the database or table. However, if a screen is
called by other screens, then some part of the overall key may have been set by the
calling screen. In this case, those key fields are read-only (cannot be modified) and the
set of records is a subset with that specified part of the key. The browse buttons operate
within that set of records i.e. The first button retrieves the first matching record in the
subset not the first on the file.

To locate a record, enter data in all the key fields. Press Enter at the last key field and the
matching record is then retrieved. If no record matches the exact key, a message that a no
record has been found is displayed. This positions in the set of records even if a partial
key is entered or the key does not exist and the Next or Previous buttons browse from
that point.

Updating a Record

 Once a record is displayed, the data fields can be modified.
At the end of processing a screen (as the user retrieves another record or exits the screen),
if the form allows updates and any of the fields have been updated, the record is written
back. This can be done automatically or a message can be displayed asking the user to
confirm that the record should be written.
At any point after updating some field(s), press the WRITE button to write the changed
data. The WRITE button is only displayed if the form allows updates and is only enabled
when some data has been updated.

SIR/XS Visual PQL 256

Prior to writing the data back, the RESET button restores the original data "undoing"
whatever changes were made.
The Clear button clears the screen data fields except for any key values preset by the
CALL to this screen.

Deleting Records

 Once a record is displayed, the DELETE button deletes the record. The DELETE button is
only displayed if the form allows updates and a record has been retrieved. The record is
deleted after asking the user for confirmation.

SIR/XS Visual PQL 257

PQLForms General Clauses

 There are a number of settings or general clauses that can be specified at different levels
and, if not over-ridden at a lower level, apply to all field definitions within the level.
Settings can be specified at the following levels:

FORM
 SCREEN
 PAGE
 FIELD

A setting at one level acts as the default for all lower levels. For example, the width of
labels could be set on the FORM command for the whole form and would apply to every
field on every screen. A setting is overridden for a particular level by specifying the
clause at that level. If a particular setting is not specified at a given level, the current
default applies.

These general clauses are:-

[NO]PROMPT [AT r,c] [WIDTH n] [FONT
([NO]BOLD|[NO]ITALIC|[NO]UNDERLINE|SIZE=N|FACE =
'fontname'|FGROUND=RRGGBB|BGROUND=RRGGBB)] ['prompt-
string'|VARDESC|VARLABEL|VARNAME]
[NO]DATA [AT r,c] [WIDTH n] [FONT
([NO]BOLD|[NO]ITALIC|[NO]UNDERLINE|SIZE=N|FACE =
'fontname'|FGROUND=RRGGBB|BGROUND=RRGGBB)]
[NO]LABELS [AT r,c] [WIDTH n] [FONT
([NO]BOLD|[NO]ITALIC|[NO]UNDERLINE|SIZE=N|FACE =
'fontname'|FGROUND=RRGGBB|BGROUND=RRGGBB)]
ERROR number 'error text'

Field Elements

 There are three main elements to each field as displayed on the screen, from left to
right, the Prompt, the Data and the Label.

• By default, a prompt is shown for each field and is the variable label (defined with
a VAR LABEL command). The default position for the prompt is one row down and
in the same column as the previous prompt or other displayed element (text,
button, etc.) and is 18 columns wide. The first prompt is in the top left corner, row
1 column 1.

SIR/XS Visual PQL 258

• By default, the data is the same row as the prompt starting one column after the
end of the prompt and is 13 columns wide.

• By default, a label is not displayed. Labels only apply to fields with value labels.
If a label width is specified, then the label is displayed (if the field has value
labels) immediately after the end of the data field.

• The row, column and width of the prompt, data and label can be specified with
common clauses on FORM, SCREEN, PAGE and FIELD commands. (See below.)
Because the three elements are positioned from left to right relative to each other,
if the prompt position or width is specified, the data and label positions are
automatically adjusted. Similarly, if the data position or width is specified, the
label position is automatically adjusted.

Screen co-ordinates

 PQLForms uses a notional set of Row and Column co-ordinates to specify vertical
rows and horizontal columns. The top row is 1 and the leftmost position is column 1.

The absolute row and column size are dependent on the font size being used. A single
row is sufficient to display a field or button. A column approximates to an average
character in the font. The number of rows and columns displayable on a screen depend on
font size and screen resolution.

AT

AT [row] [, column]

AT is a clause on a number of commands and alters the starting position for the
specified display element.

Row and column positions can be specified in either absolute or relative terms.

Absolute positions are specified with unsigned integers. For example, AT 5
positions at row 5, AT ,60 positions at column 60, AT 5,60 positions at row 5
column 60.

Relative positions are specified by prefixing the integer with a plus or minus sign.
Relative positions are relative to the default position for this element. For
example, AT -1,+40 specifies one row higher and forty columns to the right and
means that the field appears on the same row as the previous field.

An asterisk (*) may be used instead of row or column numbers to indicate the
default maximum row that is the current pagesize (default 20) or default
maximum column (80).

SIR/XS Visual PQL 259

Example AT clauses:

AT 1,1 positions to the upper left corner.
AT *,1 positions at row 20, column 1.
AT ,12 positions at column 12 of the current line.
AT -1,1 positions at the beginning of the previous line.
AT ,+10 positions 10 columns along from the default column position.

If AT is specified on PROMPT, the default DATA and LABEL column positions are
updated. Similarly, if AT is specified on DATA, the default LABEL column position
is updated.

WIDTH

WIDTH n

WIDTH is a clause on a number of commands and alters the width for the specified
display element or the width of all lower level fields if specified on a higher level
command.

The physical width of any field depends on font sizes in use and, since most fonts
are variable width, there is no exact correspondence between columns and
characters that can be displayed. A column approximates to an average character
in the font. If the displayed data or label is wider than the display width, the user
can scroll horizontally with the right and left arrows.

[NO]DATA

[NO]DATA [AT r,c] [WIDTH n]

Specifies position and/or width of the data area for fields.

AT

Specifies the starting position (row and column) of data area. If position is
specified on a higher level command, it applies to the first field. If AT is
specified on DATA, the default LABEL column position is updated.

WIDTH n

Specifies the width of data area. If WIDTH is specified on DATA, the default
LABEL column position is updated.

SIR/XS Visual PQL 260

NODATA

Suppresses the data area of the field. This also suppresses any label for the
field.

[NO]LABELS

LABELS [AT R,C] [WIDTH n] | NOLABELS

Specifies position and/or width of the label area of a field. Labels correspond to
value labels and are only displayed for fields that have value labels defined.
Labels are displayed as a choice control. This is a pull down list with all allowed
descriptions and the selected description corresponds to the value in the data field.
Choosing a description updates the value in the data field.

AT

Specifies the starting position (row and column) of label area. If position
is specified on a higher level command, it applies to the first field.

WIDTH n

Specifies that value labels, "n" characters wide, are displayed where
appropriate.

NOLABELS

Suppresses the labels area of the field.

Example: To display 20 characters of value labels next to all data fields that have
value labels, specify:

FORM TESTFORM LABELS WIDTH 20

[NO]PROMPT

[NO]PROMPT ['prompt-string' | VARDESC | VARLABEL | VARNAME] [AT r,c]
[WIDTH n]]

Specifies how prompts for fields are displayed. Prompts are left justified and
followed by a colon (:).

NOPROMPT suppresses the prompt. This does not alter the default start position of
the associated data.

prompt string

SIR/XS Visual PQL 261

Specifies a prompt string for a field. This format can only be used when
specifying prompt defaults on a specific FIELD not on any higher level
commands.

VARDESC

Specifies that the variable name and label are the prompt.

VARLABEL

Specifies that the variable label is the prompt. If a label does not exist, the
variable name is used. This is the default.

VARNAME

Specifies that the variable name is the prompt.

AT

Specifies the starting position (row and column) of prompt area. If
position is specified on a higher level command, it applies to the first field.
If AT is specified on PROMPT, the default DATA and LABEL column positions
are updated.

WIDTH n

Sets the width of the prompt. If WIDTH is specified on PROMPT, the default
DATA and LABEL column positions are updated.

FONT

FONT ([NO]BOLD|[NO]ITALIC|[NO]UNDERLINE|SIZE=N|FACE =
'fontname'|FGROUND=RRGGBB|BGROUND=RRGGBB) Non-standard fonts can be specified
with the FONT clause wherever a DATA, PROMPT or LABEL clause is specified. Follow the
FONT keyword with a set of specifications enclosed in brackets () using as many as
necessary. Note that some changes alter the amount of space required to display the item
and other positioning specifications may need to be adjusted accordingly. Fonts specified
on higher-level commands alter the default font for all fields within that level. The
various specifications are:
BOLD Display the element as bold.
ITALIC Display the element as italic.
UNDERLINE Display the element underlined.
SIZE=N Increase or decrease the size of the element. Specify a negative number to
decrease size.
FACE='fontname' Display the element using a different font. Specify the name of the

SIR/XS Visual PQL 262

font enclosed in quotes.
FGROUND=RRGGBB Display the element using a different foreground color. Specify the
color using exactly six characters; valid characters are 0 to 9 and A to F. These are three
sets of hexadecimal specifications of the strength of the red, green and blue components
of the color. Each setting has a value from 00 to FF.
FGROUND=RRGGBB Display the element using a different background color. Specify the
color using exactly six characters; valid characters are 0 to 9 and A to F. These are three
sets of hexadecimal specifications of the strength of the red, green and blue components
of the color. Each setting has a value from 00 to FF.

For example

SCREEN RECORD EMPLOYEE PROMPT FONT (FACE='Ariel')
FIELD ID PROMPT FONT (BOLD)

Note that higher level font settings apply to FIELD definitions and do not alter defaults for
buttons. If you wish to alter the font on a buttons, specify the font on a FBUTTON
command. Currently buttons do not support color but any other font specification can be
used.

ERROR

ERROR message_number 'error_text'

Specifies alternate text for a message. Each message consists of the
message_number followed by text. See messages for a full list of default
messages.

Error messages apply to the level (FORM, SCREEN, PAGE or FIELD) at which they
are defined and to all lower levels unless overridden by another error message
defined at the lower level.
Example: To change the messages for errors 15 and 47 to "This field must be two
digits." and "Jobcode must be between 10 and 60.", specify:

FIELD JOBCODE ERROR 15 'This field must be two digits.'
 ERROR 47 'Jobcode must be between 10 and 60.'

SIR/XS Visual PQL 263

FORM

FORM
 [appropriate standard RETRIEVAL/PROGRAM/SUBROUTINE clauses]
 [PQLForms general clauses]
 [AUTO]
 [CLEAR|NOCLEAR]
 [NODATABASE]
 [PAGESIZE rows]
 [PQLFILE='filename']
 [SUBROUTINE name [(input_list)]]
 [UPDATE]

General Clauses

[NO]DATA [AT r,c] [WIDTH n]
[NO]LABELS [AT r,c] [WIDTH n]
[NO]PROMPT [AT r,c] [WIDTH n] [VARDESC|VARLABEL|VARNAME]
ERROR number 'error text'

The FORM command is required. All other clauses are optional. All standard RETRIEVAL
clauses can be specified. The PQLForms general clauses can be specified. The following
specific clauses can be specified on the FORM command:

AUTO Specifies that, if updates are allowed, any new records are written to
the database without asking for confirmation. NOAUTO specifies that the
user is asked to confirm that the record should be written and is the
default.

CLEAR Specifies that, if updates are allowed, the data fields on the screen are
cleared after writing. NOCLEAR specifies that the data is not cleared and
is the default.

NODATABASE Specifies that the generated form is a PROGRAM not a RETRIEVAL and
can run without being attached to a database.

 PAGESIZE n Specifies the maximum number of data rows in a page of a screen. The
default is 20. (See the PAGE) command.

PQLFILE Specifies that the named file is created. This contains standard
VisualPQL code (i.e. all PQLForms extensions have been replaced)
that performs identical functions to the specified form. This can be
used as the basis for a program with other functionality if necessary.

SIR/XS Visual PQL 264

SUBROUTINE Specifies that the routine is compiled and saved as a SUBROUTINE. The
subroutine name is required and is the name of the compiled
subroutine. The name of the subroutine can be qualified with procedure
file and family prefixes and passwords.

A subroutine may have input parameters. These are positional
parameters corresponding to the EXECUTE SUBROUTINE list of
parameters. The parameters are read-only and are local variables in the
subroutine. These variables must be defined explicitly within the
subroutine.

To pass key variables to a SCREEN defined in a FORM
SUBROUTINE you would use:

FORM SUBROUTINE name (keys)
CALL SCREEN scrname USING (keys)
. SCREEN RECORD scrname
...

UPDATE Specifies that record and table screens allow the reading and writing of
records. By default, screens do not update the database or tabfile.
Individual screens can be set to allow/disallow updates. Local variables
can be input regardless of update status.

SIR/XS Visual PQL 265

SCREEN

SCREEN
 {MENU name |
 RECORD name [/database.record][INDEXED BY indexname] |
 TABLE name [/tabfile.table] [INDEXED BY indexname]}
 [AUTO|NOAUTO]
 [CLEAR|NOCLEAR]
 [DELETE (pql code)]
 [INITIAL (pql code)]
 [NOBUTTON]
 [PAGESIZE rows]
 [READ (pql code)]
 [SELECT (pql code)]
 [TITLE (pql code)]
 [UPDATE | NOUPDATE]
 [WRITE (pql code)]

General Clauses

[NO]DATA [AT r,c] [WIDTH n]
[NO]LABELS [AT r,c] [WIDTH n]
[NO]PROMPT [AT r,c] [WIDTH n] [VARDESC|VARLABEL|VARNAME]
ERROR number 'error text'

A SCREEN command starts a screen definition. The screen name must be specified and
must be unique within a form. This is displayed as the title of the screen. The name must
be a valid SIR/XS name.

Follow the screen command with further commands to display fields, to control the
appearance of the screen or to link to other screens. The sequence of the fields within the
screen definition determines the sequence for moving to the next field. If the display
element positioning clauses are used, this may not necessarily be the order of fields as
they appear on the screen.

End the set of commands for a screen with the END SCREEN command.

There are three screen types defined by the MENU, RECORD or TABLE keyword.

MENU

SIR/XS Visual PQL 266

Within a menu screen, FIELD commands can only refer to local variables. Menu screens
may consist simply of buttons offering choices as to which screens to go to or can display
fields or allow data entry providing that these are local variables.

The AUTO, READ, SELECT and WRITE clauses do not apply to MENU screens.

RECORD

Record screens access and display one record at a time. Within a screen, commands can
reference any variable from that record plus any local variables. Commands can also
reference common variables in a case structured database.

Specify the screen name and, optionally, the name of the record and the name of the
database. If a record name is not specified, the screen name must be the record name. If a
database name is not specified, the current database is the default.

The name CIR can be used as a record name on a case structured database to refer to the
common information record.

An index can be specified for a record and the index variables are treated as the key
fields. Only one index can be specified for a record screen. If an index is not specified,
the record is processed by any case and record keys.

The same record type can be associated with multiple screen definitions in the same form
definition to allow different ways of viewing the same data. Each screen name must be
unique.

When control is passed to a record screen, a record can be retrieved or a new entry
created. The user can enter the key fields to locate the record, or can find the appropriate
record with FIRST, LAST, NEXT or PREVIOUS buttons. The record or set of records to
retrieve can be determined by clauses on the CALL SCREEN command.

TABLE

Table screens access and display one row at a time. Within a screen, commands can
reference any variable from that table plus any local variables.

Specify the screen name and, optionally, the name of the table and the name of the
tabfile. If a table is not specified, the screen name must be the table name. If a tabfile is
not specified, the default tabfile is used.

An index can be specified for a table and the index variables are treated as the key fields.
Only one index can be specified for a table screen. If an index is not specified, the table is
processed sequentially.

SIR/XS Visual PQL 267

The same table can be associated with multiple screens in the same form definition to
allow different ways of viewing the same data. Each screen name must be unique.

When control is passed to a table screen, a row can be retrieved or a new entry created.
The user can enter the key fields to locate the row, or can find the appropriate row with
FIRST, LAST, NEXT or PREVIOUS buttons. The row or set of rows to retrieve can be
determined by clauses on the CALL SCREEN command.

Clauses

AUTO|NOAUTO Specifies that any new records are written to the database without
asking for confirmation. NOAUTO specifies that the user is asked to
confirm that the record should be written and is the default.

CLEAR Specifies that, if updates are allowed, the data fields on the screen are
cleared after writing. This is the default if not set at the FORM level.
NOCLEAR specifies that the data is not cleared.

DELETE (PQL
Code)

Specify VisualPQL code, enclosed in brackets, that is executed when a
record or row is about to be deleted. The record (row) is deleted by the
user pressing the DELETE button. The VisualPQL can be any set of
commands. The executed code can create and display sub-dialogs or
error boxes as necessary. Separate multiple commands with a semi-
colon ';'.
The DELETE commands can set a value in FAILSCR to warn the user and
reject the delete.
Example: To test that when employee has a current position, tell the
user and ask whether to accept the delete:

SCREEN RECORD EMPLOYEE
 DELETE (IFTHEN (EXISTS(CURRPOS));
 COMPUTE FAILSCR = 15;
 COMPUTE FAILMESS='Employee in current
position';
 FI)

INITIAL (PQL
Code)

Specifies VisualPQL code, enclosed in brackets, that is executed when
the user first initiates a screen before anything is displayed, before the
first command in the screen and before a record is accessed. The set of
VisualPQL to execute is any set of commands but should not display
any sub-dialogs or any other graphical elements. Separate multiple
commands with a semi-colon ';'.
Example: To set the local variable INTIME to the current time when
the screen is accessed, specify:

SCREEN RECORD EMPLOYEE INITIAL (COMPUTE INTIME=NOW(0))

 PAGESIZE n Specifies the maximum number of rows in a page of a screen. The

SIR/XS Visual PQL 268

default is 20. If the number of rows on a screen exceeds this size, then
a new page is created automatically. When a screen has multiple pages,
each page is displayed separately, the Page Up/Page Down buttons are
displayed and the screen title contains the current page number. There
is no limit to the number of pages on one single screen. All pages
within a screen are the same size visually. All pages within a screen are
one logical entity i.e. record and table screens access one single record
or row. Page breaks can be set specifically at given points by the PAGE
command.

READ (PQL
Code)

Specify VisualPQL code, enclosed in brackets, that is executed when
the user reads a record. The code is executed when a new record is
retrieved, after the record is read and before the data is displayed. The
VisualPQL can be any set of commands. The executed code can create
and display sub-dialogs or error boxes as necessary. Separate multiple
commands with a semi-colon ';'.

SELECT (PQL
Code)

Specify VisualPQL code, enclosed in brackets, that is executed as the
user moves to another record. The code is executed after a record is
read and selects whether this record is wanted. The VisualPQL can be
any set of commands that eventually set FAILSCR to non-zero if the
record is not wanted. Records that are not wanted are skipped and the
user is presented with the next wanted record. Separate multiple
commands with a semi-colon ';'.

Example: To ignore records where salary is under 2500, specify:

SCREEN RECORD EMPLOYEE SELECT (IF (SALARY LT 2500)
FAILSCR = -1)

TITLE (PQL
Code)

Specify VisualPQL code, enclosed in brackets, that is executed as each
page of the dialog is displayed and constructs the title of the dialog. If
this clause is specified, the default title is suppressed. The VisualPQL
can be any set of commands that issue a SET DIALOG TITLE command
to set the title. There are two predefined variables available. PAGENO is
the current page number; PAGES is the total pages. These are both
string variables so can easily be included in a title expression if
required. Separate multiple commands with a semi-colon ';'.

Example: To put out a title, specify:

SCREEN RECORD EMPLOYEE TITLE (SET DIALOG TITLE 'People
Page ' + PAGENO + ' of ' + PAGES)

[NO]UPDATE UPDATE specifies that this record or table screen allows the reading and
writing of records. NOUPDATE specifies that this record or table screen
does not allow the reading and writing of records. By default, screens
are set to the update status of the form. Local variables can be input

SIR/XS Visual PQL 269

regardless of update status.
WRITE (PQL
Code)

Specify VisualPQL code, enclosed in brackets, that is executed when a
record or row is written. If data has been updated, the record (row) is
written directly by the user pressing the WRITE button or when the user
retrieves a new record (row) on this screen or exits from the screen.
The code is executed after all local variables have been set to the
values displayed on the screen. This VisualPQL Code could be used to
implement ACCEPT/REJECT RECORD and REQUIRED field functionality
from old style SIRForms.
The VisualPQL can be any set of commands. The executed code can
create and display sub-dialogs or error boxes as necessary. Separate
multiple commands with a semi-colon ';'.
The WRITE commands can check the validity of a record (row) and can
set a value in FAILSCR to warn the user and reject the write.
Example: To compute the sum of VAR1, VAR2 and VAR3, specify:

SCREEN RECORD EMPLOYEE WRITE (COMPUTE TOTAL = VAR1 + VAR2
+ VAR3)
To test that when salary is greater than 5,000, tell the user and ask
whether to accept the record:

SCREEN RECORD EMPLOYEE
 WRITE (IFTHEN (SALARY GT 5000);
 COMPUTE FAILSCR = 15;
 COMPUTE FAILMESS='Salary over $5,000';
 FI)

Caution

Since there is only one fail flag for a screen, if you want to test multiple conditions then
you should ensure that you don't reset an error status to a warning. For example:
WRITE (
IFTHEN (EXISTS(NAME) EQ 0) SET FAILSCR(-1); SET FAILMESS ("You MUST
enter a name"); ENDIF;
IFTHEN (EXISTS(DOB) EQ 0) SET FAILSCR(1) ; SET FAILMESS ("You really
should enter a birthday"); ENDIF;
IFTHEN (EXISTS(GENDER) EQ 0) SET FAILSCR(1) ; SET FAILMESS ("You really
should enter a gender"); ENDIF;
)
If none of the variables above is entered then only one warning about gender is displayed.

However, with:

WRITE (
SET FAILMESS ("You really should enter:")
IFTHEN (EXISTS(DOB) EQ 0) SET FAILSCR(1) ; COMPUTE FAILMESS =
FAILMESS + "Birthday; "); ENDIF;
IFTHEN (EXISTS(GENDER) EQ 0) SET FAILSCR(1) ; COMPUTE FAILMESS =
FAILMESS + "Gender; "); ENDIF;
IFTHEN (EXISTS(NAME) EQ 0) SET FAILSCR(-1); SET FAILMESS ("You MUST

SIR/XS Visual PQL 270

enter a name"); ENDIF;
)
If none of the variables above is entered then an error message on name is displayed.
Then on the next write attempt the warning message about birthday and gender is
displayed.

END SCREEN

END SCREEN

A screen must be ended with the END SCREEN command. There are no further clauses on
the command.

SIR/XS Visual PQL 271

PAGE

PAGE
[PAGESIZE rows]

General Clauses:

[NO]DATA [AT r,c] [WIDTH n]
[NO]LABELS [AT r,c] [WIDTH n]
[NO]PROMPT [AT r,c] [WIDTH n] [VARDESC|VARLABEL|VARNAME]
ERROR number 'error text'

The PAGE command specifies that a new page begins at this point. A new page resets the
row position of the next display item to the top of the screen. When a screen has multiple
pages, the Page Up/Page Down buttons are displayed and the screen title contains the
current page number.

There is no limit to the number of pages on one single screen. All pages within a screen
are one logical entity related to one single record or row.

If any of the general clauses are specified, these apply to the first field on the page.

Clauses
 PAGESIZE n

Specifies the maximum number of data rows in a page of a screen. The default is
20. If the screen has less rows than the page size, then the dialog is the minimum
size to accommodate the visual elements.

If the row placement for a field or button exceeds the page size, a new page is
created, the row is reset to the default row for a page (1 if not specified) and
subsequent display elements are included in this new page. Lines, boxes and other
elements specified with FDISPLAY commands do not trigger automatic paging.

The page size is checked after any positioning clauses are processed and a new
page is created if necessary.

PAGESIZE n can be specified on the FORM command, on a SCREEN command or on
a PAGE command.

SIR/XS Visual PQL 272

FIELD

FIELD variable_name
[EDITIN (pql commands)]
[EDITOUT (pql commands)]
[HELP (help string expression)]
[IF (pql condition)]
[NOECHO]
[READONLY]
[TYPE [INTEGER | STRING | REAL | DATE | TIME]]

General Clauses:

[NO]DATA [AT r,c] [WIDTH n]
[NO]LABELS [AT r,c] [WIDTH n]
[NO]PROMPT [AT r,c] [WIDTH n] ['prompt-
string'|VARDESC|VARLABEL|VARNAME]
ERROR number 'error text'

The FIELD command displays the current value of a variable on the screen and provides
the capability to invoke standard PQL for editing and validating data values.

The only required clause on the FIELD command is the name of the variable. A FIELD
command without any clauses displays the data at a default position on the screen using
the dictionary definitions to control the prompt, the data format and the edit rules.

The FIELD command is used in record screens for record variables, in table screens for
table columns and in any screen for local variables. The same variable can be referenced
by multiple FIELD commands on a screen.

The sequence of the FIELD commands determines the sequence followed by the cursor on
the screen when the user presses Enter or uses the Tab keys. Field commands do not have
to correspond to the sequence of variables in a row or record. All of the fields on a record
or table do not have to be on a screen.

The FIELD command creates visual entries in the screen together with appropriate logic
to display and modify the data.

If VisualPQL commands are interspersed with FIELD commands then:

SIR/XS Visual PQL 273

• Commands specified before the first FIELD in a screen are executed whenever the
user presses Enter;

• Commands specified after a FIELD are executed when a user is positioned on that
field and presses Enter.

Clauses

 EDITIN (pql commands)

Specify VisualPQL code, enclosed in brackets, that takes the value from the
predefined string variable FIELDIN and sets the value of the record, row or local
variable. Separate multiple commands with a semi-colon ';'.
Example: A field (named SSN) for entering a social security number may be
displayed with hyphens. The following removes these:

FIELD ssn EDITIN (COMPUTE ssn = REPLACE (fieldin,'-
','',LEN(fieldin),1,0))

If the EDITIN commands check the validity of a field, set a value in a predefined
variable, FAILFLD, to indicate what is to be done with the field. A value of zero
(0) is the default and means accept the field; a positive value means warn the user
that the field has failed validity tests but they can choose to accept it; a negative
value means the field has failed validity tests and is not accepted. The standard
error message is number 57 'Failed Edit tests'. Set the value of the string variable
FAILMESS to display a different message for the test that fails. If a positive error
code is set, the text 'OK to save?' is appended to the message.

The EDITIN commands completely replace the default field assignment and
validation so your PQL code must assign a value to the variable named in the
FIELD variable_name.

EDITOUT (PQL commands)

Specify VisualPQL code, enclosed in brackets, that alters the way the field is
displayed. The specified commands are typically a function or set of functions
that use the field as the input and create the predefined string output field
FIELDOUT. The form then uses this as the field displayed in the screen. Separate
multiple commands with a semi-colon ';'.
Example: To display a social security number in the format ddd-dd-dddd:

SIR/XS Visual PQL 274

FIELD SSN EDITOUT (compute fieldout = edit (ssn,"^^^-^^-^^^^"))

N.B. If the user just edits the field then any characters added or taken out by this
process become the input. This must be dealt with, either by the user clearing the
field when editing or by appropriate logic in the EDITIN command.

HELP (string expression)

Specifies a text string or expression to display when help for a specific field is
requested by the user. When the user requests help, the string expression is
resolved and displayed as a pop up box.

IF (pql condition)

Controls whether a field is enabled or disabled (greyed out). All fields are
normally enabled. The specified condition is tested every time the data in the
screen is updated and the field is enabled if the condition is true otherwise it is
disabled.
Example: Allow monthly rent to be entered if OWNHOME is not equal to 1.

FIELD MONRENT IF (OWNHOME NE 1)

 NOECHO

Makes the field protected so the user does not see the characters in the field as
they are entered or displayed. Depending on the specific operating system, the
characters are replaced with asterisks or blanks.

 READONLY

Specifies that the field is read only. It cannot be modified nor can new data be
entered.

 TYPE

When specifying local variables on a FIELD command, the TYPE specifies the type
of field being referenced. By default, the type is INTEGER. The local variable
should also be defined using standard PQL in the beginning of the form.

SIR/XS Visual PQL 275

CALL SCREEN

CALL SCREEN screen_name

[AT r,c]
[AUTO [(pql condition)]]
[HELP (help expression)]
[IF (pql condition)]
[ONCALL FIRST | LAST]
[PROMPT 'prompt']
[USING (caseid,*| key,...)
[VIA (* | key,...)
[WIDTH n]

The CALL SCREEN command passes control from one screen to another, typically when
the user presses the button generated by the command.

The only required clause on the CALL SCREEN is the called screen_name. This references
another screen that is included in this form. If the name is a non-standard name, ensure
that it exactly matches the screen name as specified on the called screen.

The default prompt is the called screen name.

A called screen can be blank for the user to enter any keys and retrieve any records or
rows, or the key fields can be passed by this command to control the set of records or
rows that the called screen is to reference.

The data fields on the called screen may be blank for the user to select the required screen
(first or last in the set) or a record or row may be retrieved automatically with an ONCALL
FIRST or ONCALL LAST clause.

Clauses
AT

Specifies where on the screen the CALL SCREEN button is displayed.

AUTO [(pql condition)]

Specifies that screen is called automatically when the user presses Enter on the
previous field. The AUTO option suppresses the display of a button and does not
affect the position of subsequent fields. The visual clauses AT, PROMPT and WIDTH

SIR/XS Visual PQL 276

thus have no effect. If the user needs a normal button to choose to call the screen,
specify a second CALL command.

Specify a VisualPQL condition (enclosed in brackets) that controls whether the
screen is called at this point. If the condition is true, the screen is called.

 HELP (string expression)

Specifies a string expression to display when help is requested by the user when
positioned at the CALL SCREEN field.

If the user requests help, the string is displayed as a pop up box.

 IF (PQL condition)

Controls whether the button is enabled or disabled (greyed out). Call buttons are
normally enabled. The condition is tested every time the data in the screen is
updated and the button is enabled if the condition is true, otherwise it is disabled.
CALL NEXTOFKIN IF (RELATIVE = 1)

 ONCALL FIRST | LAST

Specifies that either the FIRST or LAST record in the set of records available to the
called screen is retrieved and displayed automatically.

 PROMPT 'string'

Specifies the label on the button. If a PROMPT is not specified, the name of the
called screen is used.

USING (list,...)

Specifies a list of variables that the called screen uses as keys to a different case
on a case structured database. Specify the case id value, optionally followed by
the key field values.
Example: To call a screen INDEX that references a new case with a case id of -1
and two other keyfields:

CALL INDEX USING (-1,NAME,ID)

VIA (list, ...)

Specifies a list of variables that the called screen uses as keys. Use VIA to select
records within this case, to access other records on a caseless database or to
access a SCREEN TABLE. Do not specify a case id on the VIA clause. Do not use
USING and VIA on the same CALL SCREEN command.

SIR/XS Visual PQL 277

If a CALL is within a SCREEN RECORD the key specification for either USING or VIA
keys can contain an asterisk (*) indicating that the key fields of the record from
the current screen are used. The asterisk can be preceded or followed by other
values. If an asterisk is preceded by values, these values are used positionally. e.g.
If a record has three keys, the expression (1,*) means use '1' as the first key and
take the second and third key values from this record.
If an asterisk is followed by values, the values are used positionally after the
number of keys in the calling record. e.g. If the current record has three keys, the
expression (*,1) means use the first, second and third keys from this record and
use '1' as the fourth key (presumably the record being called has at least four
keys).
If one or more of the lower level keys are omitted, all records with the specified
keys are accessible.

If a CALL is within a SCREEN RECORD and a USING or VIA clause is not specified,
all higher level keys are passed automatically that is equivalent to USING (*) or
VIA (*).

WIDTH n

Specifies the width of the CALL SCREEN button.

A CALL SCREEN can appear before the first SCREEN block and is typically used to pass
on keys that have been sent to the FORM routine:

FORM SUBROUTINE name (keys)
CALL SCREEN scrname USING (keys)
. SCREEN RECORD scrname
...

SIR/XS Visual PQL 278

FDISPLAY

FDISPLAY
 [AT r,c]
 [[DRAW [HEIGHT N] [IMAGE (bitmap_filename_expression) [BORDER]]]
 [TEXT (text_expression) [FONT
([NO]BOLD|[NO]ITALIC|[NO]UNDERLINE|SIZE=N|FACE =
'fontname'|FGROUND=RRGGBB|BGROUND=RRGGBB)]]
 [WIDTH n]

The FDISPLAY command puts a line, box, image or text on the screen. Expressions are
evaluated and the display updated when the screen is refreshed (e.g. when a new record is
read).

AT

Specifies a start position. The default start position is the current default PROMPT
start position.

DRAW

Creates vertical and horizontal lines and boxes. Lines and boxes avoid the exact
placements of fields so the same row column references as fields can be used to
group sets of fields visually. Lines and boxes do not alter the default position for
the next field.
WIDTH specifies how wide the line/box is and HEIGHT specifies how high the
line/box is. If the height is zero (or unspecified), a horizontal line is produced. If
the width is zero (or unspecified), a vertical line is produced. If both width and
height are specified, a box is produced.

The IMAGE clause specifies an expression that is resolved to the name of a bitmap
file and the image from this is displayed in the box. The BORDER clause puts a
border around the image. If an image is displayed, the default position is updated
by the height of the image.

TEXT

Specifies a text expression that is resolved and displayed as text. The default
position is updated by the standard single row. The WIDTH specifies how wide the

SIR/XS Visual PQL 279

text is. The default is the current default PROMPT width. A FONT sub-clause can be
specified as per the FONT sub-clause on the standard PROMPT clause.

For example:

FDISPLAY TEXT ('Welcome to the Administration System') FONT (UNDERLINE
SIZE=2) WIDTH 30
FDISPLAY TEXT ('Please contact ext. 123 for help') at +2,+5
FDISPLAY TEXT (NAME) AT 4,30 WIDTH 20 | Displays value in variable
NAME
FDISPLAY DRAW WIDTH 80 | Draws line for 80 columns
FDISPLAY AT 1,1 DRAW HEIGHT 10 WIDTH 50 | Draws box
FDISPLAY DRAW HEIGHT 5 WIDTH 40 IMAGE ('LOGO.BMP') | Displays image
from file

SIR/XS Visual PQL 280

ABUTTON
 ABUTTON {FIRST | LAST | NEXT | PREVIOUS | EXIT | RESET | WRITE | CLEAR
| DELETE | PAGEDOWN | PAGEUP}

The ABUTTON command is equivalent to the user pressing a button, except that it is done
under program control. This command can be used anywhere in-line VisualPQL can be
used but cannot be used in clauses on other PQLForms commands.

FIRST

Gets the first record for this screen.

LAST

Gets the last record for this screen.

NEXT

Gets the next record for this screen.

PREVIOUS

Gets the previous record for this screen.

EXIT

Returns to the calling screen or exits from the form if this is the top screen.

RESET

Restores all the record or table variables to their original values.

WRITE

Writes the record or row to the database or tabfile.

CLEAR

Clears all data fields and any key fields that are not preset by a calling screen.

DELETE

Deletes the record or row from the database or tabfile.

SIR/XS Visual PQL 281

PAGEDOWN

Displays the next page of the screen.

PAGEUP

Displays the previous page of the screen.

SIR/XS Visual PQL 282

FBUTTON

FBUTTON [button_name | ACTION (pql commands)]
 [AT r,c]
 [ID n]
 [IF (pql condition)]
 [PROMPT '']
 [REMOVE]
 [WIDTH w]

The FBUTTON command alters the visual appearance (position, width and prompt
text) of a system button or defines a user button.

button_name

Use one of the following button names to identify a system button:
FIRST|LAST|PREVIOUS|NEXT|EXIT|CLEAR|
STATUS|WRITE|RESET|DELETE|PAGEUP|PAGEDOWN|

ACTION (pql commands)

Specifies a user button. Specify PQL commands to execute when pressed.

AT

Specifies the starting position (row and column) of the button.

ID

Specifies an internal id for an ACTION button. Only specify this if you need to
refer to this button in some other VisualPQL code in the form, for example, to
enable or disable the button under particular circumstances rather than using the
IF clause on this command. The specified ID is a number from 13 to 99 (1 - 12
are used for standard buttons). The id for a button is normally automatically
allocated by the compiler and is one greater than the previous button. If you
specify an id, it must not conflict with any previously automatically allocated id,
and, if there are subsequent automatically allocated ids, there must be sufficient
numbers available under 100 to allocate. It is strongly recommended that, if it is
necessary to specify an id for a button, you specify ids for all user buttons on that
form.

IF (pql condition)

SIR/XS Visual PQL 283

Controls whether a button is enabled or disabled (greyed out). An action button is
normally enabled. System buttons may be enabled and disabled depending on
other processing. The specified condition is tested every time the data in the
screen is updated and the button is enabled if the condition is true otherwise it is
disabled.
 PROMPT 'string'

Specifies the label on the button. If a user button is created and PROMPT is
not specified, the prompt is USER BUTTON plus a unique number.

REMOVE

Removes (deletes) the button from the screen.

WIDTH

Specifies the width of the button.

SIR/XS Visual PQL 284

GENERATE

GENERATE EXCLUDE | INCLUDE
 SCREENS (screennames, ...)
 VARS (variable, ...)

General Clauses:

[NO]DATA [AT r,c] [WIDTH n]
[NO]LABELS [AT r,c] [WIDTH n]
[NO]PROMPT [AT r,c] [WIDTH n] [VARDESC|VARLABEL|VARNAME]
ERROR number 'error text'

The GENERATE command in record or table screens uses the record or table schema to
give the equivalent of default FIELD commands for every field. GENERATE in a menu
screen produces the equivalent of a default CALL SCREEN to every previously defined
record or table screen.

The EXCLUDE and INCLUDE clauses specify fields that are affected or not by the GENERATE
and allow specific FIELD commands to be combined with a GENERATE command. When a
FIELD command is specified for a variable, the variable should be EXCLUDED from the
GENERATE otherwise it appears on the screen twice.

The general clauses on the GENERATE command apply to all fields generated by the
command. The DATA, LABELS and PROMPT AT clause refers to the row position of the first
field.

EXCLUDE

Omits screens or variables from the GENERATE. When EXCLUDE is specified, any
variable not EXCLUDED is INCLUDED automatically (similarly any screen not
EXCLUDED in a generated menu is INCLUDED).

INCLUDE

Includes screens or variables in the GENERATE. When INCLUDE is specified, any
variables (or screens in menus) not INCLUDEd are EXCLUDEd.

SIR/XS Visual PQL 285

SCREENS

Specifies screen names to INCLUDE or EXCLUDE in menu screens.

VARS

Specifies a list of named variables.

For example, to specify particular options for three fields and then bring in all the
remaining fields in the EMPLOYEE record:

SCREEN RECORD EMPLOYEE/COMPANY.EMPLOYEE
TEXT 'This is the Demographic Record' AT +2
FIELD ID PROMPT 'Employee ID:'
FIELD NAME PROMPT 'Name of Employee'
FIELD SSN EDITOUT (COMPUTE FIELDOUT = EDIT (SSN,"^^^-^^-^^^^"))
 EDITIN (COMPUTE SSN = REPLACE (FIELDIN,'-
','',LEN(FIELDIN),1,0))
GENERATE EXCLUDE VARS (ID NAME SSN)
END SCREEN

Old Forms

There is an existing SirForms system that is a stand-alone system that uses a character
style interface. While the PQLForms commands are different in design and operation,
they can resemble old Forms. If comparing the PQLForms commands with old Forms
note that:-

1. The basic syntax in PQLForms is VisualPQL and conforms to VisualPQL rules in
terms of names, continuation rules, etc. For example, command continuation lines
are recognised by a blank in the first position.

2. Some old Forms command names have been used but others conflicted with
existing VisualPQL commands in that the same command syntax does different
things in the two systems. PQLForms commands avoid these conflicts e.g. CALL
SCREEN resembles the old Forms CALL; SCREEN RECORD resembles old Forms
RECORD.

3. VisualPQL already contained commands that were equivalent to various functions
in old Forms e.g. to define variables, to compute values, etc.

4. The intention is to use standard VisualPQL wherever possible so many options on
commands take standard VisualPQL replacing specific old Forms keywords e.g.
the EDITOUT and EDITIN clauses on the FIELD command (instead of keywords
such as DSPEDIT); the INITIAL, READ and WRITE clauses on the SCREEN command
(instead of keywords such as ACCEPT).

5. The VisualPQL LOOKUP command approximates this command in old Forms.
6. The Help system operates for fields. If screen level help is required, use the

FBUTTON ACTION to define a help button.
7. The concept of groups of fields has been dropped.

SIR/XS Visual PQL 286

8. The concept of separate forms based permissions has been dropped. The same
security logins/permissions as for any use of VisualPQL now apply.

SIR/XS Visual PQL 287

PQLForms Error Messages

Number Text
 27 Record not found
 30 Record Written
 37 Case not found
 38 No more records
 47 Not a valid value
 57 Failed Edit tests
110 Record failed write tests
118 Record was modified - OK to save ?

SIR/XS Visual PQL 288

PQLServer
The SIR/XS PQLServer is an executable that allows another standard SIR/XS session to
connect to it as a client and to transmit commands to the server, execute those commands
remotely and retrieve output. This is done with a set of PQL functions. The PQLServer
must be started to enable clients to communicate to it across the network. The client
processes do not require any access to files or databases that are local to the server and
the two processes (client/server) may be using different hardware/operating systems e.g.
client on windows, server on Unix.

From the client point of view processing is as follows:

• Client logs on to server and establishes a connection. This is the current
connection used by all subsequent server functions until another logon/logoff.

• Client sends any number of lines of text including SIR commands. Control
usually passes back without any actual transmission taking place - transmission
only happens when maximum message size is reached.

• Client starts execution of previously sent commands. Any commands not yet sent
to the server are transmitted, any settings or output from a previous execution
from the same client are re-initialised, the commands are run and a completion
code is returned at which point any output is waiting on the server. Commands
can include all SIR commands and can use procedures, etc. Note that commands
must include connecting any databases/tabfiles/procedure files needed each time
commands are submitted and executed. There are no saved settings between
executions.

The process may read/write files, update databases and generally do anything that
a batch run of SIR could do.

• The client may choose to wait for the execution to finish or to carry on processing
locally and subsequently test to find if the execution has completed successfully.

• Client gets count of number of lines of output and can then get each text line or
skip over unwanted lines. Lines are physically passed by the server in groups. If
skipping lines and the lines have not yet been transmitted, they are skipped on the
server. Lines once returned or skipped are no longer available. The client can get
a count of the number of lines available at any point.

• Client can repeat the process.
• Client logs off (specify a blank server) when finished.

e.g.

program

SIR/XS Visual PQL 289

compute rc = serlog ('TONYDELL:4000','')
write rc
compute x = sersend ('PROGRAM')
compute x = sersend ('WRITE "HELLO WORLD"')
compute x = sersend ('END PROGRAM')
compute rc = serexec (1)
write 'rc = ' rc
compute olines = serlines(x)
write 'lines ' olines
for i=1,olines
. compute line = serget (0)
. write line
rof
compute rc = serlog ('','')
end program

See the Environment documentation for running the PQLServer.

SIR/XS Visual PQL 290

Buffers
Buffers can be used to enter and edit unlimited amounts of text with minimal
programming.

A program can invoke the editor, either the SIR editor or a system editor depending on
parameter settings. Once the editor is invoked , control does not return to the program
until the user exits the editor. The editor can use buffers to store data and there are
VisualPQL commands to create, read and manipulate the contents of a buffer. The
commands are:

• CLEAR BUFFER, CREATE BUFFER and DELETE BUFFER that affect the whole buffer.
• DELETE LINE, GET LINE, INSERT LINE and PUT LINE that affect individual lines

in the buffer.
• EDIT BUFFER that passes control to the editor for the user to edit the buffer.

Control returns to the program when the user exits the editor.

SIR/XS Visual PQL 291

CLEAR BUFFER
 CLEAR BUFFER buffer_name_exp

Removes all the lines currently in the specified buffer. Specify an existing buffer name as
a string constant in quotes or as a string variable.

SIR/XS Visual PQL 292

CREATE BUFFER
 CREATE BUFFER buffer_name_exp

Creates a new, empty buffer. Specify the buffer name as a string constant in quotes or as
a string variable.

If the buffer already exists, a warning is issued but the program continues.

SIR/XS Visual PQL 293

DELETE BUFFER
 DELETE BUFFER buffer_name_exp

Removes the specified buffer. Specify the buffer name as a string constant in quotes or as
a string variable. If the buffer does not exist the command is ignored and no warning is
issued.

SIR/XS Visual PQL 294

DELETE LINE IN BUFFER

DELETE LINE IN BUFFER buffer_name_exp
 NUMBERED num_value

Removes a specific line in the buffer. Subsequent lines are renumbered. Specify the
buffer name as a string constant in quotes or as a string variable.

SIR/XS Visual PQL 295

EDIT BUFFER
 EDIT BUFFER buffer_name_exp

Invokes the SIR editor or the external editor with the specified buffer. Specify the buffer
name as a string constant in quotes or as a string variable.

SIR/XS Visual PQL 296

GET LINE FROM BUFFER

GET LINE FROM BUFFER buffer_name
 NUMBERED num_value
 INTO string_var

Transfers a copy of the specified line to a string variable. If the line number is greater
than the number of lines in the buffer, the string is set to undefined.

SIR/XS Visual PQL 297

INSERT LINE INTO BUFFER

INSERT LINE INTO BUFFER buffer_name
 NUMBERED num_value
 FROM string_var

Inserts a new line into the buffer before the specified line number. That is the old line
with the specified line number becomes that line number+1 and the new line becomes the
specified line number.

SIR/XS Visual PQL 298

PUT LINE TO BUFFER

PUT LINE TO BUFFER buffer_name
 NUMBERED num_value
 FROM string_var

Replaces the specified line in the specified buffer with the contents of the string argument
specified.

Example of Buffer Manipulation

The following example uses a bibliographic database in which abstracts of books are
stored. The case identifier variable is BOOKID, a string. A record type called ABSTRACT has
an integer keyfield called LINENUM and an 80 character string variable called TEXTLINE.
Each line of text of the abstract is stored as a record in this record type.

The retrieval has two parts, the control structure of the program and a set of
subprocedures that do the various program tasks such as looking for existing abstracts,
editing the abstract and saving the abstract in the database.

RETRIEVAL UPDATE NOAUTOCASE
STRING * 80 TMPLINE
INTEGER * 2 EDITEND
CREATE BUFFER 'ABSTRACT' | create a buffer for editing
LOOP | beginning of control
structure
. ERASE SCREEN | clear the screen
. DISPLAY TEXTBOX 'Enter Book ID:' | get book id
 RESPONSE RESVAR, BOOKID
. IFTHEN(RESVAR LE 0) | if no bookid is provided
. DELETE BUFFER 'ABSTRACT' | get rid of buffer
. EXIT RETRIEVAL | end the retrieval
. ELSE | if we have a bookid
. EXECUTE SUBPROCEDURE GETBOOK | get existing abstract
. EXECUTE SUBPROCEDURE EDITBOOK | edit the abstract
. IFTHEN(EDITEND = 299) | if user cancelled
. CLEAR BUFFER 'ABSTRACT' | empty the buffer
. NEXT LOOP | go for another book
. ELSEIF(EDITEND = 277) | if execute buffer
. EXECUTE SUBPROCEDURE SAVEBOOK | store text
. NEXT LOOP | go for another book
. END IF
. END IF
END LOOP | end of control structure

C** -- subprocedure definitions

SIR/XS Visual PQL 299

SUBPROCEDURE GETBOOK | gets abstract from db
OLD CASE IS BOOKID
. PROCESS REC ABSTRACT
. INSERT LINE INTO BUFFER 'ABSTRACT' | load lines into buffer
 numbered LINENUM from TEXTLINE
. END REC
END CASE
IFTHEN (SYSTEM(14) = 0) | if book is not in database
. DISPLAY ERRBOX 'New Book' | give a message
ENDIF
END SUBPROCEDURE

SUBPROCEDURE EDITBOOK | edit the abstract
EDIT BUFFER 'ABSTRACT'
END SUBPROCEDURE

SUBPROCEDURE SAVEBOOK | store text in database
CASE IS BOOKID | create or access book
SET LINENUM (0) | initialise line counter
LOOP | go thru lines in buffer
. LINENUM = LINENUM + 1
. GET LINE FROM BUFFER 'ABSTRACT' numbered LINENUM into TMPLINE
. IFTHEN(EXISTS(TMPLINE)=1)
. RECORD IS ABSTRACT (LINENUM)
. PUT VARS TEXTLINE = TMPLINE
. END REC
. ELSEIF(EXISTS(TMPLINE)=0) | if (end of buffer)
. PROCESS REC ABSTRACT | go thru any other records
 FROM (LINENUM)
. DELETE REC | and delete the record
. END REC
. EXIT LOOP
. END IF
END LOOP
CLEAR BUFFER 'ABSTRACT'
END CASE
END SUBPROCEDURE
END RETRIEVAL

SIR/XS Visual PQL 300

DISPLAY WDL
 DISPLAY WDL {'string_val' | varname]

Sends either the specified string constant (in quotes) or the contents of the specified
variable to the OutputHandler callback routine in SirAPI. The variable must be a string.

SIR/XS Visual PQL 301

Functions
Functions return a single numeric or string value derived from the arguments of the
function. Arguments are separated by commas. In general, the functions can appear in
any string, arithmetic or logical expression in a VisualPQL program. Schema functions
can be used in a PROGRAM. The functions are listed by type and in alphabetical order with
a full explanation of each.

List of Functions by Type

Function types are:

• Trigonometric
• Mathematical
• Argument List
• Across record
• Date and Time
• Global and Parameter
• String
• Concurrent
• Miscellaneous
• Session
• Schema & Database
• Tabfile & Table
• Read/Write
• Dialog and Menu
• Client/Server
• CGI

For a detailed description of all functions, see the alphabetic list of functions.

SIR/XS Visual PQL 302

Trigonometric Functions

 ACOS arc cosine (also ARCOS)

ASIN arc sine (also ARSIN)

ATAN arc tangent

COS trigonometric cosine

SIN trigonometric sine

TAN trigonometric tangent

TANH hyperbolic tangent

SIR/XS Visual PQL 303

Mathematical Functions

 ABS absolute value

AINT truncation (also TRUNC)

ALOG natural logarithm (also LN or LOG)

ALOG10 base 10 logarithm (also LG10 or LOG10)

AMOD remainder of division (also MOD)

EXP exponentiation (base e)

FEQ compares two floating point numbers within a tolerance

RAND random uniform number (0-1) (also RANF)

REAL4 returns the REAL*4 value of a REAL*8 number

RND rounding

SIGN transfer of sign

SQRT square root

TRUNC truncates least significant digits

SIR/XS Visual PQL 304

Argument List Functions

 CNT count the number of arguments that are not missing

FST return the first argument that is not missing

LST return the last argument that is not missing

MAX return the largest argument that is not missing

MEAN compute the mean of the arguments that are not missing

MIN return the smallest argument that is not missing

STDEV compute the standard deviation of non missing values

SUM compute the sum of all arguments that are not missing

SIR/XS Visual PQL 305

Across Record Functions

 The "across records" functions may only appear in PROCESS REC or PROCESS ROW blocks
. They compute a result based on a single variable in each record or row processed in the
PROCESS REC or PROCESS ROW block. They ignore values that are missing or undefined.
Records that contain missing or undefined values are not counted nor are they used in the
calculation of averages. Some of these functions can be used with string values, others do
not apply to strings. If a function returns a string (e.g. as a maximum), a maximum of 32
characters are returned.
CNTR,FSTR,LSTR,MAXR,MINR,CNT,FST,LST,MAX,MIN can all be used with strings.
MEANR,STDEVR,SUMR,AMOD,MEAN,STDVEV,SUM are only relevant to numeric values.

CNTR counts the number of times the variable occurs.

FSTR returns the first value processed.

LSTR returns the last value processed

MAXR returns the largest value processed

MEANR computes the average value (SUMR / CNTR)

MINR returns the smallest value

STDEVR computes the standard deviation

SUMR computes the sum of values

SIR/XS Visual PQL 306

Date and Time Functions

 CDATE converts a date string to a date integer

CTIME converts a time string to a time integer

DATEC converts a date integer to a date string

DATET returns the current date and time as a string

DTTOTS takes a date and a time integer and returns a Timestamp as a real*8 value

JULC converts a date integer to a date string

JULN converts day, month, and year to a date integer

NOW returns the current time as a time integer

TIME converts hours, minutes, and seconds to a time integer

TIMEC converts a time integer to a time string

TODAY returns current date as a date integer

TSDODT takes a Timestamp and returns the date component as an integer

TSDOTM takes a Timestamp and returns the time component as an integer

SIR/XS Visual PQL 307

Global Functions

 DGLOBAL Deletes a global variable

DSN Returns a full filename associated with an attribute

GLOBALN Assigns a numeric value to a global variable

GLOBALS Assigns a string value to a global variable

NARG Returns a numeric argument from run parameter list

NGLOBAL Returns the value of a global numeric variable

SARG Returns a string argument from run parameter list

SGLOBAL Returns the value of a global string variable

SIR/XS Visual PQL 308

String Functions

 CAPITAL Capitalises the first letter of each word in string

CATINT Returns an integer value of a categorical variable

CATSTR Returns a string value of a categorical variable

CENTER Returns a centred string

CHAR Returns the character with the numeric internal value

COMMA Separates thousands by inserting commas in a numeric string

EDIT Applies editing template to a data string

FILL Replaces blanks in string

FORMAT Converts a number to a string

ICHAR Returns the numeric internal value of a character

LEN Returns the string length in characters

LOWER Converts all characters in string to lower case

NUMBR Converts a string to a number

PACK Returns the string with compressed blanks

PAD Pads a string with character to specified length

PATTERN Returns whether a pattern is found in a string

PFORMAT Converts a number to a formatted string

PICTURE Validates a string by comparing to a picture

REGEXP Searches a string for a substring specified by a regular expression

REGREP Searches a string for a substring specified by a regular expression and replaces it
according to a second regular expression

SIR/XS Visual PQL 309

REPLACE Replaces substrings with a specified string

REVERSE Returns a string spelled backwards

SBST Returns a substring of a string

SGET Returns the value of a string variable

SPREAD Returns a string with single blanks between characters

SPUT Stores string value in string variable

SRST Searches for a substring

SUBSTR Returns a substring of a string

TRIM Trims trailing blanks from a string

TRIML Deletes blanks from the left

TRIMLR Deletes blanks from the left and the right

TRIMR Deletes blanks from the right

UPPER Converts all characters of string to upper case

VARGET Gets value from string variable where variable name is an expression.

VARPUT Puts value into string variable where variable name is an expression.

SIR/XS Visual PQL 310

Concurrent Functions

CASELOCK Change lock type for and retry current CIR (also CIRLOCK)

RECLOCK Change lock type for and retry current record

SYSTEM(36) Whether current record is locked

SYSTEM(37) Whether current CIR is locked

SYSTEM(38) Whether a concurrent session using Master

SYSTEM(39) Returns the ordinal number of the default database. No Database returns 0

SIR/XS Visual PQL 311

Miscellaneous Functions

ARRDIMN Returns number of dimensions of a local array variable

ARRDIMST Returns start value of a dimension of a local array variable

ARRDIMSZ Returns number of entries of a dimension of a local array variable

CLIPAPP Adds text to the clipboard

CLIPGET Gets text from the clipboard

CLIPLINE Gets count of lines in the clipboard

CLIPSET Clears the clipboard and adds text to the clipboard

CRYPTKEY Sets the key for the encryption functions.

DECRYPT Decrypts an encrypted string.

ENCRYPT Encrypts a string.

ERROR Displays a text message error box

EXISTS Indicates if variable exists (not missing or undefined)

EXTERN Invokes user-supplied external functions returning a numeric value. These must
be in the EXTERN dll.

EXTERNS Invokes user-supplied external functions returning a string value. These must be
in the EXTERN dll.

HELP Invokes the Help system

MISNUM Returns the "type" of missing or undefined value

MISSING Returns the original value for missing values

MSGTXT Returns the error message text for an error number

PROGRESS Controls the display of a progress bar

SEEK Sets a position on an open file.

SIR/XS Visual PQL 312

SRCH Searches a table of values

STDNAME Checks a name and wraps curly brackets around if it is a non-standard name.
SYSTEM Returns various system values such as CPU time used, whether a database access
has been successful, etc.

YESNO Displays a text question box and returns response

SIR/XS Visual PQL 313

Session Functions

 APPDIR Returns application directory

ATTRNAME Attribute n name (str)

BUFNAME Buffer n name

CURDIR Returns current directory

DEFFAM Default family name

DEFMEM Default member name

DEFTFN Default tabfile name

DELDIR Deletes the named directory

DELFILE Deletes the named file

EDITNAME Editor name

FAMNAME Family n name

FILECNT Returns a count of files in named directory

FILEIN Browses for a file

FILEIS Returns if name exists as file or directory

FILEN Returns the nth file in directory

FILEOUT Browses for an output file

FILESTAT Returns various data about named file e.g. Date/time of creation/access, size of
file, etc. Times and dates are in system format

FILETIME Returns various data about times of creation/access of file with times and dates
converted to SIR formats

GETENV Gets a string environment variable value

GLOBNAME Gets the name of the nth global variable

SIR/XS Visual PQL 314

LINES Lines remaining on output page

MAKEDIR Creates a directory

MEMCOUNT Count of members in family

MEMINFO Various information about a member

MEMNAME Name of nth member

NSUBDIR Name of nth subdirectory

OUTFNAME Name of current output file

PAGELEN Length of output page

PAGENO Current output page number

PAGEWID Width of output page

PROCFILE Procedure file filename

PROCNAME Procedure file attribute name

RACCESS Returns the read access level of user

RNMFILE Renames a file

SETDIR Sets current directory

SETRC Sets a return code

SIRUSER Sets/returns the current user name

SUBDIR Concatenates a subdirectory to existing directory path in correct system specific
manner

SYSTEM Returns various "system" status values

UPGET Gets User Preference (from INI file)

UPSET Sets User Preference (in INI file)

WACCESS Returns the write access level of user

SIR/XS Visual PQL 315

WINCNT Returns the number of lines in the output window

WINLIN Returns the nth line from the output window

WINMOVE Moves and resizes the main window

WINPOS Moves to line in output window

WINSELL Returns selected line from output window

WINSELP Returns position in line selected from output window

SIR/XS Visual PQL 316

Schema & Database Functions

 COUNT Number of records of a given type in the current case

DATEMAP Returns the date format (map) of a date variable

DBINDN Name of nth index on default database

DBINDR Number of record type indexed

DBINDS Number of indexes on default database

DBINDT Name of the nth variable in index followed by either ASC or DESC and UPPER
if uppercase index

DBINDU Returns 1 if index is unique

DBINDV Number of variables in index

DBNAME Name of the nth database

DBTYPE Returns database type, case or caseless

JOUFLAG Returns whether journaling is on for default database

KEYNAME Returns name of a record type key field

KEYORDER Returns sort order ("A" or "D") of a key field

MAXRECS Returns the maximum allowed number of a particular record type

MISS Returns the original (string) for missing values (0 - 3) for a variable

MKEYSIZE Returns the size of the largest record key in the database

MRECSIZE Returns size of the largest record in the database

NKEYS Returns the number of key fields for a record type

NLABELS Synonym for NVALLAB. Returns the number of variable value labels defined
for a variable

NMAX Returns the maximum value of a numeric variable range

SIR/XS Visual PQL 317

NMIN Returns the minimum value of a numeric variable range

NOFCASES Returns the maximum number of cases for the database

NRECS Returns the maximum number of record types for the database

NUMCASES Returns the number of cases in the database

NUMRECS Returns the number of records of a given type in the database

NVALID Returns the number of defined valid values for a variable

NVALLAB Returns the number of variable value labels defined for a variable

NVARDOC Returns the number of lines of variable documentation defined for a variable

NVARS Returns the number of variables for the specified record type

NVARSC Returns the number of variables including common vars for the specified record
type

NVVAL Returns the nth valid value of a numeric variable

RECDOC Returns the nth line of documentation for a record or database

RECDOCN Returns the number of lines of documentation for a record

RECLEVEL Returns the update level at which a record was last written to database

RECNAME Returns the name of the record type

RECNUM Returns the number of the record name

RECSIZE Returns the record size of a specified record type

RKEYSIZE Returns the key size of a specified record type

RRECSEC Returns the read security level of a record type

RVARSEC Returns the read security level of a variable

SMAX Returns the maximum value of a string variable range

SMIN Returns the minimum value of a string variable range

SIR/XS Visual PQL 318

STATTYPE Returns whether a numeric variable is defined as observation, control or
neither

SVVAL Returns the nth defined string valid value of a variable

TIMEMAP Returns the time format (map) string format of a time variable

UPDLEVEL Returns the current update level of database

VALIDATE Validates a value of a database variable against schema

VALLAB Returns the value label for the current value of a variable

VALLABSC Returns the value label for a specified value of a variable

VALLABSN Returns the nth value label of a variable

VALLABSP Returns the number (nth) of the value label associated with a specified value of
a variable.

VALLABSV Returns a string that is the nth value associated with value labels of a variable.

VARLAB Returns the variable label for a variable (up to 78 characters)

VARLABSC Returns the variable label of a specified variable (up to 78 characters)

VARDOCSN Returns the nth line of variable documentation of a specified variable

VARNAME Returns the name of the variable using counts excluding common vars.

VARNAMEC Returns the name of the variable using counts including common vars.

VARPOSIT Returns the input position of the variable

VARTYPE Returns the storage type of a variable (string or numeric)

VFORMAT Returns a string representing the variable input format

VTYPE Returns the SIR data type of a variable (7 types)

WRECSEC Returns the write security level of a record type

WVARSEC Returns the write security level of a variable

SIR/XS Visual PQL 319

Tabfile & Table Functions

TABINDN Index name of nth index

TABINDS Number of indexes on nth table

TABINDT Variable name and sequence of nth variable on index

TABINDU If nth index is unique

TABINDV Number of variables in nth index

TABNAME Name of nth table

TABRECS Number of rows on nth table

TABVARS Number of cols (variables) in nth table

TABVINFN Various numeric data about column

TABVINFS Various string data about column

TABVNAME Column name

TABVRANG Value of valid/missing range for column

TABVTYPE Column type

TABVVALI Validates table column

TABVVLAB Value label for table column

TABVVVAL Value label value for table column

TFACCESS Access a(uto),r(ead) w(rite) of nth tabfile

TFATTR Internal attribute name of nth tabfile

TFCOUNT Number of connected tabfiles

TFFILE Filename of nth tabfile

TFGRNAME Group name of nth tabfile

SIR/XS Visual PQL 320

TFGRPW Group password of nth tabfile

TFJNNAME Journal name of nth tabfile

TFNAME Name of nth tabfile

TFTABS Number of tables on nth tabfile

TFUSNAME User name of nth tabfile

TFUSPW User password of nth tabfile

SIR/XS Visual PQL 321

Read/Write Functions

NGET Gets the value of a numeric variable

NPUT Stores a value in a numeric variable

NREAD Pops up a box on the screen with a prompt and returns a number from the user

SGET Gets the value of a string variable

SPUT Stores a value in a string variable

SREAD Pops up a box on the screen with a prompt and returns a string from the user

TWRITE Writes a string to the scrolled output window

SIR/XS Visual PQL 322

Dialog & Menu Functions

BRANCH Adds a branch to the tree at a particular place.

BRANCHD Deletes a branch from the tree.

BRANCHN Returns id of nth branch.

FINDITEM Search list for text

GETBTNH Returns the height of button control

GETCHCH Returns the height of choice control

GETCHKH Returns the height of check control

GETFLT Gets floating point as per GETTXT

GETFOCUS Returns id of control with focus

GETICHK Returns check or radio state

GETIFLT Returns floating point from a list

GETIINT Returns integer of item from a list

GETINT Gets integer as per GETTXT. 0 if not integer

GETITXT Returns text of item from a list

GETLBLH Returns the height of labels

GETLTXT Gets the text from a line in a multi-line text control

GETMAXCH Returns the height of the maximum single line control

GETMCHK Tests the state of a menu or toolbar item

GETMSEL Returns pos of nth selected item from multiple selection

GETNITEM Returns number of items in choice or list

GETNLINE Gets number of lines in multi-line text control

SIR/XS Visual PQL 323

GETNSEL Returns number of items selected in multiple selection

GETPOS Returns pos of current selection in list or choice or keyboard focus in multiple
selection

GETRADH Returns the height of radio control

GETRSTEP Returns the size of the row step

GETTXT Gets text from edit and from highlighted item in choice or list. (Gets label text
from label, button, check and radio)

GETTXTH Returns the height of text control

IDSTATUS Returns the status of a control

NBRANCH Returns number of braches in a tree below a point.

SCROLLAT Gets a position in a gui scrollable item

SCROLLTO Sets a position in a gui scrollable item

SETPOS Sets a position in a gui multi-line item

SETRANGE Sets minimum/maximum values in a gui slider/spin/progress control. Sets the
maximum number of characters allowed in an edit or text field (ignoring the minimum
parameter).

Dialog Editor

DITEM... There are a number of functions that return information about items on a
DEDIT dialog, that is a dialog used for screen painting. These functions are all named
DITEMxxx.

SIR/XS Visual PQL 324

Client/Server Functions

There are three servers in SIR/XS and a client program may be communicating with one
of those or with an ODBC server from another software supplier. The three SIR/XS
servers are Master that controls concurrent updates, the SQLServer, that acts as an ODBC
server for other packages, and the PQLServer that is a server that can run any SIR/XS
processes requested by a client. Most communication with master is done transparently
i.e. it does not require specific functions, however there are a set of functions that can be
used to administer master if required.

Client Functions to administer Master

DELMCLID Deletes the client from Master.

GETAKL Returns the client AutoKill Limit from Master.

GETDFC Returns the difference file copy interval from Master.

GETMCADD Returns the client tcp/ip address from Master.

GETMCLID Returns the nth client id from Master.

GETMCLST Returns the time of last message for nth client from Master.

GETMCON Returns the time of log on for nth client from Master.

GETMDBN Returns the name for nth database from Master.

SETAKL Sets the AutoKill time Limit for master clients.

SETDFC Sets the difference file copy interval for Master.

Client Functions to SQLServer/ODBC

BINDPARM Binds an SQLServer/ODBC parameter.

COLCOUNT Returns a count of columns created by the execute

COLLABEL Returns the label of a specific column created by the execute

COLLEN Returns the length of a specific string column created by the execute

COLNAME Returns the name of a specific column created by the execute

SIR/XS Visual PQL 325

COLTYPE Returns the type of a specific column created by the execute

COLVALN Returns the numeric value of a specific column created by the execute

COLVALS Returns the string value of a specific column created by the execute

GETERR Returns the oldest error posted for this application and deletes the message.

NEXTROW Steps through the rows one at a time

ODBCTABS Produce list of tables on the data source

ODBCCOLS Produce list of columns from the named table on the data source

ROWCOUNT Count of rows created by the execute

Client Functions to PQLServer

SERADMIN Various server administration capabilities (returning numeric values)

SERADMIS Various server administration capabilities (returning string values)

SEREXEC Instructs server to execute previously sent commands

SERGET Gets a line of output from server

SERLINES Asks server how many lines of output are left

SERLOG Logs on to the server

SERSEND Sends a string to the server

SERSENDB Sends a buffer to the server

SERTEST Asks server if execution has completed

PQLServer Functions

(These have no effect if used in a program that is not running on the server)
SERNOOUT Suppresses server output

SERWRITE Writes a line of output from server

SIR/XS Visual PQL 326

CGI Functions

Buffer functions return number of lines. All parameters are string expressions.

CGIBUFPN Get buffer of value of parameter

CGIBUFPN Get buffer of value of parameter

CGIBUFSV Get buffer of value of server variable

CGIVARPN Get parameter value

CGIVARSV Get server variable value

SIR/XS Visual PQL 327

List of Functions from A to Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 ABS

num = ABS(X)

Returns the absolute value of X.

 ACOS

num = ACOS(X)

Returns the arc cosine of X. The result is in the range 0 to PI radians. Values of X outside
the range -1<X>1 return undefined.

 AINT

num = AINT(X [,n])

Returns the truncated value of X. If n is omitted or 0, truncates to an integer value. If n is
specified, truncates to that power of 10. e.g. AINT (1266,2) truncates to 1200,
AINT(1.266,-2) truncates to 1.26.

ALOG

num = ALOG(X)

Returns the natural logarithm (base e) of X. Values less than or equal to zero return
undefined.

 ALOG10

num = ALOG10(X)

Returns the base 10 logarithm of X. Values less than or equal to zero return undefined.

 AMOD

num = AMOD(X , Y)

Returns the remainder of X divided by Y. If Y is zero, undefined is returned.

 APPDIR

SIR/XS Visual PQL 328

str = APPDIR(0)

Returns SIR/XS application directory. That is the directory where the SIR executables are
installed.

ARCOS

num = ARCOS(X)

See ACOS function.

ARRDIMN

num = ARRDIMN(array_name_exp)

Returns the number of dimensions for specified local array variable.

ARRDIMST

num = ARRDIMST(array_name_exp,dim)

Returns the start value for the specified dimension for specified local array variable
(normally 1 unless array specified to start at different value).

ARRDIMSZ

num = ARRDIMSZ(array_name_exp,dim)

Returns the size of the specified dimension for specified local array variable.

ARCOS

num = ARCOS(X)

See ACOS function.

ARSIN

num = ARSIN(X)

See ASIN function.

 ASIN

num = ASIN(X)

Returns the arc sine of X. The result is in the range -pi/2 to +pi/2 radians. Values outside
the range-1<X>1 return undefined.

SIR/XS Visual PQL 329

 ATAN

num = ATAN(X)

Returns the arctangent of X. The result is in the range -pi/2 to +pi/2 radians.

ATTRNAME

 str = ATTRNAME(n)

Returns the nth Attribute name (SYSTEM(52) = attribute count).

BINDPARM

 num = BINDPARM(conid,statid,parmno,num_exp)

Binds an sqlserver/odbc parameter.

BRANCH

 num = BRANCH(control_id,parent_id,node_id,text)

Creates a new node under the given parent node in the tree control.

BRANCHD

 num = BRANCHD(control_id,node)

Deletes a branch in the tree control given by the node.

BRANCHN

 num = BRANCHN(control_id,node,n)

Returns id of nth child of the given node.

BUFNAME

 str = BUFNAME(n)

Returns the nth Buffer name (SYSTEM(56) = buffer count).

CAPITAL

str = CAPITAL(str)

Capitalises the first alphabetic character of the string and the first alphabetic character
following a blank. All other characters remain unedited. For example:

SIR/XS Visual PQL 330

NAME = 'this is the first day of the week'
NAME = CAPITAL(NAME)
Returns: This Is The First Day Of The Week

CASELOCK

num = CASELOCK(locktype)

Changes the lock type for the current Case (CIR) and attempts to read the current CIR
from the database. See SYSTEM(37) function to determine if current CIR is locked. The
locktype codes are (any other values set concurrent read):

1 = Exclusive
2 = Concurrent Read
3 = Concurrent Write
4 = Protected Read
5 = Protected Write
6 = Exclusive

 CATINT

num = CATINT(A, B)

Returns an integer corresponding to the category in categorical variable A that B
matches. A and B may be variables, string constants or expressions. Returns a zero if no
match is found.

 CATSTR

str = CATSTR(A)

Returns a string corresponding to the current value of the specified categorical variable.

 CDATE

num = CDATE(X, date format)

Returns the date integer equivalent to the date string X that may be a string constant,
variable or expression. The date format is a string expression. See date formats for a
complete description. If a date earlier than October 15, 1582 is specified, undefined is
returned. Example:
INTDATE = CDATE('6/3/7', 'MM/DD/YY')

CENTER

str = CENTER(X , strY)

Returns string strY centred in a string X characters in length. Example:

SIR/XS Visual PQL 331

RESULT = CENTER(9, 'ABC')

returns: " ABC ".

CGIBUFPN

 n = CGIBUFPN(buf,pn)

Used when dealing with CGI from webserver. Puts value of CGI parameter into named
buffer. Returns number of lines. Parameters are string expressions.

CGIBUFSV

 n = CGIBUFSV(buf,sv)

Used when dealing with CGI from webserver. Puts value of server variable into named
buffer. Returns number of lines. Parameters are string expressions.

CGIVARPN

 str = CGIVARPN(pn)

Used when dealing with CGI from webserver. Returns named parameter value in string
variable. Parameter name is a string expression.

CGIVARSV

 str = CGIVARSV(sv)

Used when dealing with CGI from webserver. Returns named server variable value in
string variable. Server variable name is a string expression.

 CHAR

str = CHAR(N)

Returns a single character. The character returned is the character with the internal value
of N. (See the ICHAR function.) If N is larger than 255, N is divided by 256 and the
remainder is taken. This gives the set of standard characters. If N is missing, a null string
is returned (length 0).

CIRLOCK

See CASELOCK function

CLIPAPP

num = CLIPAPP(text)

SIR/XS Visual PQL 332

Appends text to the clipboard (the place holding text you cut and paste).

CLIPGET

str = CLIPGET(line)

Gets a line of text from the clipboard (the place holding text you cut and paste).

CLIPLINE

num = CLIPLINE(dummy)

Gets number of lines of text currently in the clipboard (the place holding text you cut and
paste).

CLIPSET

num = CLIPSET(text)

Clears the clipboard and puts text into the clipboard (the place holding text you cut and
paste).

 CNT

num = CNT(X1 , X,..... , Xn)

Counts the number of values in a list that exist (not missing or undefined). There may be
up to 128 variables in the list. Returns zero (0) if no values exist.

 CNTR

num = CNTR(X)

Returns the number of values of X found during a PROCESS REC or PROCESS ROWS loop
that are not missing or undefined. Returns zero if all values are missing or undefined.

COLCOUNT

 num = COLCOUNT (conid,statid)

Client/Server function. Returns a count of columns created by the execute.

COLLABEL

 str = COLLABEL (conid,statid,colno)

Client/Server function. Returns the label of a specific column created by the execute.

COLLEN

SIR/XS Visual PQL 333

 num = COLLEN (conid,statid,colno)

Client/Server function. Returns the length of a specific string column created by the
execute.

COLNAME

 str = COLNAME (conid,statid,colno)

Client/Server function. Returns the name of a specific column created by the execute.

COLTYPE

 num = COLTYPE (conid,statid,colno)

Client/Server function. Returns the type of a specific column created by the execute. This
is one of the following:
1 = String
2 = Timestamp string
3 = Date
4 = Time
5 = Integer
6 = R4
7 = R8
8 = Scaled Integer

A timestamp string is a formatted 18 byte string containing a combination date/time as
follows:
YYYYMMDDHHMMSStttt where YYYY is the year, MM is the month, DD is the day
number, HH is the 24 hour number, MM is the minutes, SS is the seconds and tttt is the
thousandths of a second. Any of these components may be zero.

COLVALN

 num = COLVALN (conid,statid,rowno,colno)

Client/Server function. Returns the numeric value of a specific column created by the
execute. This does not have to be the same type as returned by COLTYPE. e.g. Integers can
be assigned to a real.

COLVALS

 str = COLVALS (conid,statid,rowno,colno)

Client/Server function. Returns the string value of a specific column created by the
execute.

COMMA

SIR/XS Visual PQL 334

str = COMMA(str)

Places a comma between every third digit to the left of a decimal point (actual or implied)
in a string with a numeric form. For example, COMMA ('4500000') returns '4,500,000'.

 COS

num = COS(X)

Returns the trigonometric cosine of X, where X is measured in radians.

 CRYPTKEY

num = CRYPTKEY(encryption_key)

Sets the key used by the encryption functions ENCRYPT/DECRYPT. The key is a 256 bit (32
character) string. The key only needs to be set once in a session that uses the encryption
functions. If the key is not set, the encryption functions use a key of all blanks.

The specified key is an expression. i.e. a variable name or a string in quotes.

 COUNT

num = COUNT(X)

Returns the number of records for record type X within the current case.

 CTIME

num = CTIME(X , time format)

Returns the number of seconds from midnight to the given time.
Specify a time string X and a time format. See time formats for a complete description. If
the hour, minute or second field is omitted, they default to zero. For example:

WINTIME = CTIME('18:36:45', 'HH:MM:SS')

CURDIR

 str = CURDIR(0)

Returns the current directory.

 DATEC

str = DATEC(X , date format)

Returns a date string equivalent to the date integer X formatted according to the date
format. The format is a string constant. See date formats for a complete description. For

SIR/XS Visual PQL 335

example, DATEC(XBEG, 'Www, Mmm DDth, YYYY') produces a result such as "Thu, May
25th, 2007

DATEMAP

str = DATEMAP (rtnum, varname_exp)

Returns a string with the date format (map) of the specified date variable. If the record
number (rtnum) is negative, the function applies to a summary variable; if rtnum is one
more than the maximum record count (i.e. NRECS(0)+1) then this applies to a standard
variable.
The varname is an expression. If this is a constant, enclose the name in single quotes.
Undefined is returned if the variable is unknown or is not a date variable. For example, if
the variable BIRTHDAY in record type one has the date format "MM DD YY" defined
in the schema, then DATESTR equals "MM DD YY".

DATESTR = DATEMAP (1, 'BIRTHDAY')

 DATET

str = DATET(N1 , N)

Returns a 27-character string containing the current date and time. The string is
composed of the following substrings:

Date
 1- 3 Day of the week (SUN,MON,etc.)
 4- 5 Comma and blank
 6- 8 Month of the year (JAN,FEB,etc.)
 9 Blank
 10-11 Day of the month
 12-13 Comma and blank
 14-17 Year
 18-19 Comma and blank

Time
 20-21 Hour (1 to 12)
 22 Period
 23-24 Minutes
 25 Blank
 26-27 AM or PM

The two arguments N1 and N are constants in the range 1 to 27 that select a substring of
the 27-character string. For example, suppose the current date is May 25, 2000, and the
time is 1:05 PM; the day is Thursday.

PROGRAM
TODATE = DATET (6, 17)
NOWTIME = DATET(20, 27)
WKDAY = DATET(1, 3)

SIR/XS Visual PQL 336

WRITE TODATE NOWTIME WKDAY
END PROGRAM

OUTPUT: MAY 25, 2000 01.05 PM THU

DTTOTS

real*8 = DTTOTS (date,time)

Takes a date and time integer and returns a timestamp. A timestamp is a real*8
representation and is the number of seconds since the start of the SIR/XS calendar. You
can do calculations between timestamps but the individual date and time components
must be extracted using the TSTODT and TSTOTM functions before using any other date and
time functions e.g. for print formatting.

DBINDN

str = DBINDN (index)

Returns name of nth index.

DBINDR

n = DBINDR (index)

Returns number of record type indexed by nth index.

DBINDS

n = DBINDS (dummy)

Returns number of indexes on default database.

DBINDT

str = DBINDT (index,varno)

Name of nth variable in nth index plus ASC/DESC and UPPER.

DBINDU

n = DBINDU (index)

Returns 1 if the index is unique or 0 if the index is not unique.

DBINDV

n = DBINDV (index)

SIR/XS Visual PQL 337

Returns number of variables in nth index.

DBNAME

str = DBNAME (n)

Returns a string with the name of the nth attached database. If n is zero, returns the name
of the default database.

DBTYPE

 num = DBTYPE (dummy)

Returns 1 if a case structured database or 0 if caseless.

DECRYPT

 str = DECRYPT(string,length)

Decrypts an encrypted string. Set the encryption key (using CRYPTKEY prior to the first
invocation of this function. Obviously the key must be the same as was used to encrypt
the string.

DEFFAM

 str = DEFFAM(0)

Returns the default family name.

DEFMEM

 str = DEFMEM(0)

Returns the default member name.

DEFTFN

 str = DEFTFN(0)

Returns the default tabfile name.

DELDIR

 n = DELDIR(dir_name)

Deletes the named directory. Returns 0 for success.

DELFILE

SIR/XS Visual PQL 338

 n = DELFILE(file_name)

Deletes the named file (use filename not attribute). Returns 0 for success.

DELMCLID

 str = DELMCLID(id,password)

Deletes the client from master. Get the client id from GETMCLID. Specify a password as a
string variable or string in quotes if the Master is started with a password.

DGLOBAL

num = DGLOBAL(string_exp)

Deletes a global. The string expression may be the global name enclosed in quotes or a
string variable.

DITEM

DITEM...

The DITEM series of functions all pertain to the Dialog Editor used to construct screen
painting applications.

DITEMCOL

num = DITEMCOL(n) Returns the column the nth DEDIT item is positioned at.

DITEMH

num = DITEMH(n) Returns the height of the nth DEDIT item.

DITEMID

num = DITEMID(n)Returns the id of the nth DEDIT item.

DITEMROW

num = DITEMROW(n) Returns the row the nth DEDIT item is positioned at.

DITEMS

num = DITEMS(0) Returns the number of items on DEDIT dialog.

DITEMSEL

num = DITEMSEL(0) Returns the number of items selected on DEDIT dialog.

SIR/XS Visual PQL 339

DITEMSID

num = DITEMSID(n) Returns the id of the nth selected DEDIT item.

DITEMTXT

str = DITEMTXT(n) Returns the text of the nth DEDIT item.

DITEMTYP

num = DITEMTYP(n) Returns the type of control of the nth DEDIT item.

DITEMW

num = DITEMW(n) Returns the width of the nth DEDIT item.

DSN

str = DSN(string_exp)

Returns the operating system filename of an attribute. The attribute may be a variable or
constant.

EDIT

output_str = EDIT(input_str,edit_str)

EDIT applies an edit string to data to produce the output. The edit string is made up of
circumflexes (^), that represent a character of the input string, and any other characters
to insert. Example:

PROGRAM
SSN = EDIT('123456789','^^^-^^-^^^^')
WRITE SSN
END PROGRAM

Output: 123-45-6789

EDITNAME

 str = EDITNAME(0)

Returns the name of the current text editor.

ENCRYPT

 str = ENCRYPT(string,length)

SIR/XS Visual PQL 340

Encrypts a string. Set the encryption key (using CRYPTKEY) prior to the first invocation of
this function.
The string is a SIR string and the encrypted string is also a normal SIR string but it
should be noted that encryption may result in non-text characters and so encrypted strings
should not be written to text files.
The encryption algorithm encrypts eight (8) characters at a time and any input string is
padded with blanks so that the output is a correctly encrypted string. If you truncate this
and save an encrypted string that is not a multiple of eight, the last few characters will not
decrypt properly.

ERROR

num = ERROR(strX)

Displays an error box with the specified text and waits for acknowledgment.

EXISTS

num = EXISTS(X)

Returns 1 if X exists, 0 if X is missing or undefined. To test several numeric variables for
existence, use the CNT function.

EXTERN

num = EXTERN (X)

Invokes a user-supplied external function from the EXTERN dll. The function can take a
numeric or string parameter and calls a different user function for each case. The
extern.dll library supplied by SIR contains dummy functions which return zero.

EXTERNS

str = EXTERNS (X)

Invokes a user-supplied external function from the EXTERN dll. The function can take a
numeric or string parameter and calls a different user function for each case. The
extern.dll library supplied by SIR contains dummy functions which return blank (a
zero length string).

 EXP

num = EXP(X)

Returns the value of e raised to the X power. e is the constant 2.71828.

FAMNAME

SIR/XS Visual PQL 341

 str = FAMNAME(n)

Returns the nth family name in the default procfile. (SYSTEM(57) = Count of families).

FEQ

 str = FEQ(real1,real2,exponent)

Tests two floating point numbers for equality within a limit of accuracy. The function
returns 0 if approximately equal, 1 if unequal. For example, if the exponent was -3, the
numbers would be equal if within .001.

FILECNT

n = FILECNT(str)

Counts the files in the directory given by the string argument. The string must be a
filename or mask. For example, specify a mask like '*.pql' for the count of those files
with extension "pql" in the current directory.

FILEIN

str = FILEIN(filter,default_extension)

Displays a file browse box for user to choose existing file. Returns zero length string if
user cancels.

FILEIS

n = FILEIS(file_name_string)

Tests if file exists. Returns -1 if name is a directory; 0 if no such name; 1 if file exists.

FILEN

str = FILEN(string,n)

Returns the nth file name in the directory given by the string argument. The string must
be a filename or mask. For example, to list all files with extension "pql" in the current
directory:

FOR N = 1,FILECNT("*.pql")
. WRITE [FILEN("*.pql",N)
END FOR

FILEOUT

str = FILEOUT(filter,default_extension)

SIR/XS Visual PQL 342

Displays a file browse box for user to choose output file. Returns zero length string if
user cancels.

FILESTAT

n = FILESTAT(filename_string,type_of_data)

Returns various system specific data about a named file.
Type of data
1 gid Numeric identifier of group that owns file (UNIX-specific)
2 st_atime Time of last access of file. (system date/time integer)
3 st_ctime Time of creation of file. (system date/time integer)
4 st_dev Drive number of the disk containing the file (same as st_rdev).
5 st_ino Number of the information node (the inode) for the file (UNIX-specific).
6 st_mode Bit mask for file-mode information. The _S_IFDIR bit is set if path specifies a
directory; the _S_IFREG bit is set if path specifies an ordinary file or a device. User
read/write bits are set according to the file's permission mode; user execute bits are set
according to the filename extension.
7 st_mtime Time of last modification of file. (system date/time integer)
8 st_nlink Always 1 on non-NTFS file systems.
9 st_rdev Drive number of the disk containing the file (same as st_dev).
10 st_size Size of the file in bytes; (Can exceed I4 in size)
11 uid Numeric identifier of user who owns file (UNIX-specific)

FILETIME

n = FILETIME(filename_string,type_of_data)

Returns SIR times or dates about a file
Type of data
1 Time of last access of file. (SIR time integer)
2 Date of last access of file. (SIR date integer)
3 Time of creation of file. (SIR time integer)
4 Date of creation of file. (SIR date integer)
5 Time of last modification of file. (SIR time integer)
6 Date of last modification of file. (SIR date integer)

FILL

 str = FILL(strX , strY)

Replaces all blank characters in strX with the first character of string argument strY. The
length of strX does not change. For example:

RESULT = FILL (' $100.00', '*')
returns "**$100.00"

SIR/XS Visual PQL 343

FINDITEM

 num = FINDITEM (id,pos,txt)

Search dialog choice or list for text and return position. Can start from partway through.

 FORMAT

str = FORMAT(X [,W [,D]])

Converts X to a string. FORMAT(X) returns free-field format as wide as necessary to fit
the value. FORMAT(X,W) returns a free field format of width W. FORMAT(X,W,D) returns a
number with D decimal places in width W. X, W and D, can be variables, constants or
expressions. W, if specified, must be greater than or equal to zero. D, if specified, can be
-1 or greater than or equal to zero. -1 is equivalent to not specifying a value (free field
format). If D is specified, W must be greater than D. For example:

STR = FORMAT (1.3) returns '1.3'
STR = FORMAT (1.3, 4) returns ' 1.3'
STR = FORMAT (1.3, 5, 2) returns ' 1.30'

 FST

num|str = FST(X1, X.., Xn)

Returns the first value in the list of up to 128 variables that is not missing or undefined.

 FSTR

num|str = FSTR(X)

Returns the first value of X encountered during a PROCESS REC or PROCESS ROWS loop
that is not missing or undefined.

GETBTNH

 num = GETBTNH (dummy)

Returns the height of button control (for positioning).

GETCHCH

 num = GETCHCH (dummy)

Returns the height of choice control(for positioning).

GETCHKH

SIR/XS Visual PQL 344

 num = GETCHKH (dummy)

Returns the height of check control(for positioning).

GETAKL

n = GETAKL(0)

Returns automatic disconnection timeout for idle clients (from Master) in minutes.

GETDFC

 n = GETDFC(0)

Returns time (from Master) of difference file copy interval in minutes.

GETENV

 str = GETENV(variable_str)

Returns the value of the named environment variable.
COMPUTE OSPATH = GETENV('PATH')

GETERR

 str = GETERR (dummy)

Client/server function. Returns the oldest error posted for this application and deletes the
message. Returns a zero length string if no messages. Errors are not specific to a
connection or statement, rather they are posted for this instance of SIR/XS and, if errors
are not retrieved when an error condition occurs, multiple error messages may be waiting.
One logical error may also give rise to multiple error messages from the server.

GETFLT

 dbl = GETFLT (id)

Gets floating point as per GETTXT. Returns 0.0 if not f.p. number.

GETFOCUS

 num = GETFOCUS (0)

Returns id of control with focus.

GETICHK

SIR/XS Visual PQL 345

 num = GETICHK (id)

Returns check or radio state.

GETIFLT

 dbl = GETIFLT (id,pos)

Returns floating point from a list.

GETIINT

 int = GETIINT (id,pos)

Returns integer of item from a list.

GETINT

 int = GETINT (id)

Gets integer as per GETTXT. 0 if not integer.

GETITXT

 str = GETITXT (id,pos)

Returns text of item from a list.

GETLBLH

 num = GETLBLH (dummy)

Returns the height of labels (for positioning).

GETLTXT

 str = GETLTXT (id,p)

Gets the text from a line in a multi-line text control.

GETMAXCH

 num = GETMAXCH (dummy)

Returns the height of the maximum single line control (for positioning).

GETMCADD

 str = GETMCADD (id)

SIR/XS Visual PQL 346

Returns tcp/ip address for client from master.

GETMCHK

 num = GETMCHK (id)

Returns check state from menu item.

GETMCLID

 n = GETMCLID (n)

Returns id for nth client from master.

GETMCLST

 n = GETMCLST (n)

Returns time of last message for nth client from master.

GETMCON

 n = GETMCON (n)

Returns time of log on for nth client from master.

GETMDBN

 str = GETMDBN (n)

Returns name of nth database from master.

GETMSEL

 num = GETMSEL (id,N)

Returns the position of the nth selected item from a single or multiple selection list. In the
case of a single selection list then GETMSEL(id,1) is the same as GETPOS(id).

GETNITEM

 num = GETNITEM (id)

Returns number of items in choice or list.

GETNLINE

 num = GETNLINE (id)

SIR/XS Visual PQL 347

Gets number of lines in multi-line text.

GETNSEL

 num = GETNSEL (id)

Returns number of items selected in multiple selection or returns 1 for a single selection
list.

GETPOS

 num = GETPOS (id)

Returns pos of current selection in list or choice or keyboard focus in multiple selection.

GETRADH

 num = GETRADH (dummy)

Returns the height of radio control (for positioning).

GETRSTEP

 num = GETRSTEP (dummy)

Returns the size of the row step (for positioning).

GETTXT

 str = GETTXT (id)

Gets text from edit and from highlighted item in choice or list. (Gets label text from label,
button, check and radio).

GETTXTH

 num = GETTXTH (dummy)

Returns the height of text control (for positioning).

 GLOBALN

num = GLOBALN(globvar_exp , numeric_exp)

Assigns a numeric value to a global variable. The first argument is the name of the global
variable, the second argument is the numeric expression (or variable name). For example:
To assign the global variable RT the value 25.5:

COMPUTE Y = GLOBALN('RT', 25.5)

SIR/XS Visual PQL 348

GLOBALS

num = GLOBALS(stringexp , stringexp)

Assigns a string value to a global variable. The first argument is the name of the global
variable, the second argument is the string expression (or variable name). For example:
To assign the global variable TEMP the value JOE SMITH:

COMPUTE Y = GLOBALS ('TEMP','JOE SMITH')
GLOBALN and GLOBALS return:

0 if the assignment was made.

-1 if the first argument is not a valid global variable name.

-2 if the second argument is missing.

Do not try to use the value of globals set by GLOBALN or GLOBALS for text substitution in
the same program (by using the global variable name within angle brackets) because the
functions work at execution time and text substitution happens at compile time.

GLOBNAME

 str = GLOBNAME(n)

Returns the name of the nth global variable. (SYSTEM(53) = Global Count).

HELP

error = HELP(help page)

Invokes the HELP system, beginning with the specified help page. The page must be in
html format in the help directory. The page name can contain directory names using
forward slashes to delimit. Enclose the name in quotes. The system converts this to a file
name prefixed with a path pointing to the help directory and suffixed with the file
extension .htm. For example:

COMPUTE X = HELP ('visualpql/function/foreword')

ICHAR

num = ICHAR(C)

Returns a numeric value equivalent to the position in the character collating sequence of
the first character in string C. The character collating sequence for a given computer is
the set of numeric codes used for internal character representation (ASCII).

IDSTATUS

SIR/XS Visual PQL 349

num = IDSTATUS(id)

Returns the status of a gui element. -1 = the control does not exist; 0 = the control is
disabled; 1 = the control is enabled.

JOUFLAG

num = JOUFLAG (dummy)

Returns whether journaling is on (1) or off (0) for the database.

 JULC

str = JULC(X)

Converts a "date integer", X, into an 12-character string of the form 'MMM DD, YYYY'.

 JULN

num = JULN(month,day,year)

Returns a "date integer" where the three numeric arguments are month, day and year. A
"date integer" is the number of days since the start of the Gregorian calendar on October
15, 1582.
Years can be specified as various values. If a year of zero is specified, this year is used. If
a year of less than 10 is specified, this decade is used. If a year between 10 and 99 is
specified, the CENTYR parameter is used to determine the appropriate century to use. If a
year between 100 and 999 is specified, then values greater than 583 are taken to be in the
last millennium (1583 - 1999), values smaller than 583 are taken to be in the current
millennium (2000+).
A value of undefined is returned if a date earlier than October 15, 1582 is specified.
Because of leap years, this routine is only accurate for dates up to Dec 31 29999.
For example:

DURATION = JULN(4, 8, 0) - BEGINDAT

ENDPROJ = JUNL(TMON, TDAY, TYEAR)

KEYNAME

str = KEYNAME (rtnum, keynum)

Returns the name of the specified keyfield for the specified record type. RTNUM is the
record number. KEYNUM is the number of the keyfield, i.e. 1 is the case id, 2 is the first key
field in the record type, etc.

KEYORDER

SIR/XS Visual PQL 350

str = KEYORDER (rtnum, varname_string)

Returns "A" or "D" for the sort order of the specified keyfield. The variable name
argument is an expression.

 LEN

num = LEN(strX)

Returns an integer value that is the length, in characters, of the string strX, leading and
trailing blanks included.

LG10

num = L10(X)

See ALOG10 function.

LINES

num = LINES(filename)

Returns number of lines remaining on current page being written to a file.

LN

num = LN(X)

See ALOG function.

LOG

num = LOG(X)

See ALOG function.

LOG10

num = LOG10(X)

See ALOG10 function. (LG10 is also allowed.)

 LOWER

str = LOWER(string)

Returns the string with all characters converted to lower case.

 LST

SIR/XS Visual PQL 351

num|str = LST(X1 , X ,....., Xn)

Returns the last value in the list of up to 128 variables that is not missing or undefined.

 LSTR

num|str = LSTR(X)

Returns the last value of X encountered in a PROCESS REC or PROCESS ROWS loop that is
not missing or undefined.

 MAKEDIR

num = MAKEDIR(name)

Creates a new directory using the name. Returns -1 if the directory cannot be created.

 MAX

num|str = MAX(X1 , X ,....., Xn)

Returns the maximum value in the list of up to 128 variables.

 MAXR

num|str = MAXR(varname)

Returns the maximum value of the specified variable encountered during a PROCESS REC
or PROCESS ROWS loop that is not missing or undefined.

 MAXRECS

num = MAXRECS(rectype)

Returns the maximum number of records allowed for this record type.

 MEAN

num = MEAN(X1 , X ,....., Xn)

Returns the mean (arithmetic average), of the values within the list that are not missing or
undefined. The maximum number of variables allowed in the argument list is 128.

 MEANR

num = MEANR(varname)

SIR/XS Visual PQL 352

Returns the mean (arithmetic average), for the values of the specified variable
encountered during a PROCESS REC or PROCESS ROWS loop that are not missing or
undefined.

MEMCOUNT

 num = MEMCOUNT(famname)

Returns the count of members in the named family of the default procfile.

MEMINFO

 num = MEMINFO(member_name,info_type)

Returns information about the named member. The member name can include the :type
qualifier. The function returns missing if the member does not exist.

The INFOTYPES are:

1. TYPE - returns 1 for :T; 2 for :E; 4 for :O ; 8 for :V
If the member type is not given in the member name, and there is more than one
type for this name then the sum of the types is returned. e.g.
SYSPROC.MENU.ABOUT is a :t and an :o so
MEMINFO ("SYSPROC.MENU.ABOUT",1) returns 5
MEMINFO ("SYSPROC.MENU.ABOUT:O",1) returns 4
MEMINFO ("SYSPROC.MENU.ABOUT:E",1) returns missing.

2. SECURITY returns 0 (no password), 1 (password & public), 2 (password & not
public).

3. LENGTH returns the number of bytes in the member (note there is some
condensing going on here).

4. CREATE DATE returns the creation date as a Julian date integer.
5. CREATE TIME returns the creation time as number of seconds since midnight.
6. MOD DATE returns the last modification date as a Julian date integer.
7. MOD TIME returns the last modification time as number of seconds since

midnight.
8. STATUS (mainly for :e :o and :v types):

0 - good
-1 incorrect version of SIR
-2 Default database not connected
-3 Database creation date/time mismatch
-4 incorrect PQL Retrieval version
-5 CIR/Record Schema level mismatch.

MEMNAME

 str = MEMNAME(famname,n)

SIR/XS Visual PQL 353

Returns the name of the nth members in the named family of the default procfile.

 MIN

num|str = MIN(X1 , X ,..., Xn)

Returns the minimum value in the list of up to 128 variables.

 MINR

num|str = MINR(varname)

Returns the minimum value of the specified variable encountered during a PROCESS REC
or PROCESS ROWS loop that is not missing or undefined.

MISNUM

 num = MISNUM(X)

If X is undefined, 0 is returned. If X is missing, the missing type is returned (1 to 3). If X
is neither missing nor undefined, undefined is returned. X may be a numeric or string
variable.

MISS

str = MISS (rtnum, varname_str , n)

Returns the original value for undefined and first, second and third missing values (as a
string), where n is 0, 1, 2, or 3. If the record number (rtnum) is negative, the function
applies to a summary variable; if rtnum is one more than the maximum record count (i.e.
NRECS(0)+1) then this applies to a standard variable.

 MISSING

num|str = MISSING(varname)

Returns the original value of a variable if it is missing, otherwise undefined is returned. If
the variable is a time, date, or categorical integer, the original string value is returned. If
the variable is an integer or floating point variable, the original numeric value is returned.
If the argument is not a single variable name, undefined is returned.

MKEYSIZE

num = MKEYSIZE (dummy)

Returns the maximum key size in bytes for the database. The key for a record is
comprised of the case identifier (in a case structured database), the record type number,

SIR/XS Visual PQL 354

and the keyfields defined for the record type (if any). Refer to the schema definition
command MAX KEY SIZE for more information about maximum key size.

MOD

See AMOD function.

MRECSIZE

num = MRECSIZE (dummy)

Returns the size of the largest record type in the database. Size is expressed in the number
of double words that are equivalent to eight characters.

MSGTXT

str = MSGTXT (num)

Returns the text of the error or warning massage given by the number num.

NARG

num = NARG(num)

Returns numeric arguments from the command parameter list. (String parameters are
retrieved with the SARG function.)

The argument is the position of the parameter in the list. An argument value of zero
returns the number of parameters in the list. If the argument is greater than the number of
parameters in the parameter list or the argument is a string, undefined is returned. For
example, to return the value of the third argument of the parameter list (which must be
numeric):

COMPUTE ARG4 = NARG(3)

NBRANCH

 num = NBRANCH (control_id,node)

Returns number of branches of the given node in a tree control.

NEXTROW

 num = NEXTROW (conid,statid)

Client/server function. Steps through the rows one at a time. This must be issued before
getting data for the first row. Returns the row number or zero if no more rows.

SIR/XS Visual PQL 355

 NGET

num = NGET(varname_str)

Returns the value of the specified numeric variable. The variable name is specified as a
string variable, quoted string constant or string expression whose value is the name of a
common, record or program variable.

NGLOBAL

num = NGLOBAL(C)

Returns the value of numeric global parameters. C is a character variable, constant or
expression whose value specifies the name of the global parameter. If C is not a defined
global parameter, undefined is returned. String global parameters are retrieved with
SGLOBAL. For example, to set the variable NVAL to the value of global parameter
RACETIME:

COMPUTE NVAL = NGLOBAL ('RACETIME')

NKEYS

num = NKEYS (rtnum)

Returns the number of keyfields (sort-ids) for the specified record type (excluding the
case id).

NLABELS

 num = NLABELS (rtnum , varname_str)

See NVALLAB.

NMAX

num = NMAX (rtnum , varname_str)

Returns the highest valid numeric value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
See VAR RANGES for more information about valid ranges.

NMIN

num = NMIN (rtnum, varname_str)

Returns the lowest valid numeric value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than

SIR/XS Visual PQL 356

the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
See VAR RANGES for more information about valid ranges.

NOFCASES

num = NOFCASES (dummy)

Returns the current maximum number of cases as defined in the schema See N of CASES
for more information.

NOW

num = NOW(dummy)

Returns a "time integer" representing the current time of day as the number of seconds
since midnight. The argument is a dummy argument, specify zero.

 NPUT

num = NPUT (A , Y)

Stores the value of numeric argument Y in numeric variable A. A is a string variable
name, quoted string constant or string expression whose value is the name of a common,
record, or program variable. The value returned by the function is the value actually
stored in A (possibly undefined, missing, etc.). If A refers to a common or record
variable, the Retrieval must be in update mode. The following example stores 175 in the
variable Height:

COMPUTE DUMMY = NPUT('HEIGHT', 175)

NREAD

num = NREAD(strX)

Pops up a box on the screen with a prompt and returns a number from the user.

If a non-numeric field is entered, a message is issued and the user is prompted again.

NRECS

num = NRECS (dummy)

Returns the maximum number of record types for the database. This is the maximum
possible number of record types, not the actual number of record types defined for the
database.

NSUBDIR

SIR/XS Visual PQL 357

str = NSUBDIR (n)

Returns the name of the nth sub-directory.

 NUMBR

num = NUMBR(strX)

Returns the numeric value of the string strX. strX is a string constant, variable name or
expression and contains only numerical characters, at most one decimal point and a plus
or minus sign or is in E+exponent format.

NUMCASES

num = NUMCASES (dummy)

Returns the number of cases in the database. Same as functions SYSTEM(24) or
NUMRECS(0).

NUMRECS

num = NUMRECS (rtnum)

Returns the number of records of the specified record type.

NVALID

num = NVALID (rtnum , varname_str)

Returns the number of valid values for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

NVALLAB

 num = NVALLAB (rtnum , varname_str)

Returns the number of value labels defined for a variable. NLABELS is a synonym. If the
record number (rtnum) is negative, the function applies to a summary variable; if rtnum is
one more than the maximum record count (i.e. NRECS(0)+1) then this applies to a
standard variable.
See VALUE LABELS for more information about value labels.

NVARDOC

 num = NVARDOC (rtnum , varname_str)

SIR/XS Visual PQL 358

Returns the number of lines of documentation defined for a variable. Variable
documentation does not apply to a summary variables. (Just use comment lines in
programs for documentation.) See VAR DOC for more information about variable
documentation.

NVARS

num = NVARS (rtnum)

Returns the number of variables (not Common) defined in the specified record type.

NVARSC

num = NVARSC (rtnum)

Returns the number of variables (including Common) defined in the specified record
type.

NVVAL

num = NVVAL (rtnum , varname_str , n)

Returns the value of the nth valid value of a numeric variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

ODBCCOLS

 num = ODBCCOLS (conid,statid,tabname)

Client/server function. Does an ODBC query that produces a result set that contains a list
of columns from the named table on the data source and can be interrogated using the
standard functions.

ODBCTABS

 num = ODBCTABS (conid,statid)

Client/server function. Does an ODBC query that produces a result set that contains a list
of tables on the data source and can be interrogated using the standard functions.

OUTFNAME

 str = OUTFNAME (0)

Returns the name of the default output file.

 PACK

SIR/XS Visual PQL 359

str = PACK (strX)

Returns a string with leading and trailing blanks deleted and multiple blanks compressed
into one blank. The argument strX may be a string constant, variable name or string
expression.

PAD

str = PAD(input, pad , len , trunc)

Pads the input string with the specified pad character to the pad length and then truncates
the string to the truncation length.

PAGELEN

n = PAGELEN(filename)

Returns the current setting for page length for specified file.

PAGENO

n = PAGENO(filename)

Returns the current page number on specified file.

PAGEWID

n = PAGEWID(filename)

Returns the current setting for page width on specified file.

 PATTERN

num = PATTERN (strX , pattern_str)

Returns 1 if the pattern specified by pattern_str is in strX, otherwise 0. Both arguments
are strings and can be variables, constants or expressions. The pattern can contain the
match anything character "@". Undefined is returned if either argument is missing or
undefined. For example, the following returns 1.
THERE = PATTERN ('Mr. Ralph Jones', 'Mr.@Jones@')

PFORMAT

str = PFORMAT(num, picture)

Formats a number according to a picture, returning a string. A picture is a string of
characters, enclosed in quotes. Within the picture certain characters have special
meanings. The meanings are identical to those used on the output specification of the
WRITE command as per the following:

SIR/XS Visual PQL 360

Each digit can be represented by a "9", a "z", a "*" or a "$". "9" specifies that leading
zeros are replaced by blank; "z" specifies that leading zeros are written; "*" specifies that
leading zeros are replaced by "*"; "$" after an initial "$" character, represents a floating
dollar sign where leading zeros are suppressed. If the field has a value of zero, a picture
of all "9"s results in blanks and all "$"s results in a single "$" since all leading zeros are
suppressed; if a single zero is wanted, specify a single "z" as the last character of the
picture.
A period represents the decimal point and separates the specification into characters
before and after the decimal point. There can only be one decimal point (period) in the
picture. If there are insufficient digits to display the integer portion of the field (including
any minus sign when negative and $ when specified), the field is written as all 'X's. The
decimal component is rounded to match the number of decimal digits specified. If there
are no decimal digits in the picture, the field is rounded to the integer value.
Specify comma (,) to insert this character. If leading zeros are suppressed (by blanks or a
floating dollar), any leading commas are suppressed. If a single dollar sign is specified, it
is output in that position. If multiple dollar signs are specified, these suppress leading
zeros and result in a floating dollar sign that is output in front of the first significant digit.
After the decimal point, the special characters "9", 'Z', "$" and "*" are all equivalent and
specify a digit. Any other characters are treated as any other special character.
Negative numbers, by default, are output with a minus sign ahead of the first significant
character. If an explicit minus sign is included as the last character in the picture, and the
number is negative, the minus is written at that point. Any other characters are output at
the position specified in the picture. For example:

PROGRAM
write ["'"+PFORMAT(2500,'$zzzz.zz')+"'"] 40t
"'$2500.00'"
write ["'"+PFORMAT(12345.67,'zzzzzzzz.zzzzz')+"'"] 40t
"'00012345.67000'"
write ["'"+PFORMAT(SQRT(99),'999999.9999999')+"'"] 40t "'
9.9498744'"
write ["'"+PFORMAT(12345.67,'z z z z z.ZZZZ')+"'"] 40t "'1 2
3 4 5.6700'"
write ["'"+PFORMAT(12345.67,'ZZZZZ')+"'"] 40t
"'12346'"
write ["'"+PFORMAT(12345.67,'*********.**')+"'"] 40t
"'****12345.67'"
write ["'"+PFORMAT(12345.67,'9,999,999.99')+"'"] 40t "'
12,345.67'"
write ["'"+PFORMAT(12345.67,'9,9,9,9,9,9,9,9.9,9,9')+"'"] 40t "'
1,2,3,4,5.6,7,0'"
write ["'"+PFORMAT(-9,'ZZZ')+"'"] 40t "'-
09'"
END PROGRAM

PICTURE

num = PICTURE(str, picture)

SIR/XS Visual PQL 361

Validates a string according to a specified picture. A picture is a string of characters,
enclosed in quotes. string. Within the picture certain characters have special meanings:
Note: the character codes are lower case. They are:

a - any letter
d - any digit
n - any letter or digit
s - numeric value components (0-9, decimal point,+,+"",E)
u - any uppercase letter
l - any lowercase letter
x - any character

The first example returns a 0 showing the string matches the picture. The second example
returns a 6 to show that the string does not match the picture in the sixth position:

X = PICTURE ('123-45-6789','ddd-dd-dddd')
X = PICTURE ('123-45-67', 'ddd-d-ddd')

PROCFILE

str = PROCFILE(0)

Returns the filename of the default procfile (e.g.: c:\SIRXS\company.sr4)

PROCNAME

str = PROCNAME(0)

Returns the attribute of the default procfile. In SIR/XS this is always PROCFILE.

PROGRESS

num = PROGRESS (type,percent)

Controls the display of a progress bar.
x = PROGRESS (0,0) initiates the display.
x = PROGRESS (1,n) displays progress up to n where n is a percentage from 1 to 100.
x = PROGRESS (2,0) closes the display.
The initiation, updating and closing do not have to be in the same VisualPQL program.
Once initiated in a program, the progress display is closed only by this function, not
automatically at the end of the program and thus can be used to display progress through
a suite of programs. If the progress display has not been initiated, the function has no
effect.

RACCESS

num = RACCESS (dummy)

SIR/XS Visual PQL 362

Returns the read security access level of the current user. That is the level corresponding
to the read security password of the user.

 RAND

num = RAND(dummy)

Returns a uniform random number between 0 and 1. The normal way to call the function
is with a dummy argument of zero. Multiple calls then return a sequence of random
numbers. If the function is called with a number as the argument, this resets the seed and
returns the first random number generated from that seed. For a given seed, the same
sequence of random numbers is generated. You can also alter the default seed by
specifying a seed on the RETRIEVAL or PROGRAM command.

RANF

See RAND function.

REAL4

num = REAL4(real*8)

Converts a real*8 into a real*4 number.

RECDOC

num = RECDOC(recno,lineno)

Returns the nth line of documentation for the record. If the line number is zero, the
function returns the record label. If the record number is zero, the function returns the nth
line of database level documentation and if both record and line number are zero then the
DATABASE LABEL is returned.

RECDOCN

num = RECDOCN(recno)

Returns the number of lines of documentation for the record. If the record number is zero,
the function returns the number of lines of database level documentation.

RECLEVEL

num = RECLEVEL(dummy)

Returns the update level of the current record (when it was last written to the database).
The update level changes with each modification to the record (during a RETRIEVAL

SIR/XS Visual PQL 363

UPDATE, Batch Data Input run, FORMS updating session, etc.). This function can only be
used in a PROCESS REC loop.

RECLOCK

num = RECLOCK(locktype)

Changes the lock type for the current record for concurrent operations and attempts to
read the current record from the database. See SYSTEM(36) function to determine if
current record is locked. The locktype codes are (all other values set concurrent read):

1 & 6 = Exclusive
2 = Concurrent Read
3 = Concurrent Write
4 = Protected Read
5 = Protected Write

RECNAME

str= RECNAME(rtnum)

Returns the name of the specified record type. If rtnum is 0, "CIR" is returned. Only used
in a RETRIEVAL.

RECNUM

num= RECNUM(recname)

Returns the number of the specified record name. If the name does not exist, returns
undefined. Only used in a RETRIEVAL.

RECSIZE

num = RECSIZE (rtnum)

Returns the record size for the specified record type in double words. For example, to
find the length of record type 1:

EMPSIZE = RECSIZE (1)

REGEXP

num = REGEXP(string,regular_expression,nth,style)

Searches a string for the nth occurrence of a substring as specified by the regular
expression. Returns -1 if error in regular expression, 0 if not found in string or n where n
is start position of nth occurrence of found string.

SIR/XS Visual PQL 364

A regular expression is one where special characters describe the matching that is
required. The meaning of the special characters needs to be specified and there is a
standard for regular expressions used by many packages. SIR has had its own regular
expression processor and these functions REGEXP/REGREP allow you to choose whether to
use standard PERL or POSIX expressions or SIR expressions. A Style of 1 specifies SIR
expression, 2 specifies PERL and 3 specifies POSIX. PERL is the default. Please see
standard documentation for PERL and POSIX for a full explanation of the syntax of their
regular expressions.

SIR Expressions

A SIR expression consists of the following:
c literal character (eg: "Name:")
? any character except end of line (eg: "?and");
% beginning of line (eg: "%first");
$ end of line (null string before end of line) (eg: "last.$");;
[...] character class (any one of 'these' characters)(eg: [a-zA-Z0-9#@%_]);
[!...] negated character class (all but these characters) (eg: [!a-z]);
* closure (zero or more occurrences of the previous pat)(eg: [a-z]*);
+ closure (one or more occurrences of the previous pat)(eg: [a-z]+);
@c escaped character (eg: @%, @[, @*);

Any special meaning of characters in an expression is lost when escaped, inside [...] or in
the following cases:
% not at the beginning (eg: [0-9.]+%);
$ not at the end (eg: $[0-9.]+);
* at the beginning of a pattern;
+ at the beginning;

A character class consists of zero or more of the following elements, surrounded by [and
]:
c literal character, including [
a-c range of characters (digits, lower or upper case)
! negated character class (if at beginning)
@c escaped character (@!, @-, @@, @])
Special meaning of characters in a character class is lost when escaped or for:
! not at the beginning
- at the beginning or end

Any part of expression may be specified to be 'tagged':
< start a tagged substring
> end a tagged substring
(Tagged substrings are numbered from left to right. See the substitution expression for
replacement of tagged substrings.)
A substitution pattern consists of zero or more of the following elements:
c literal character

SIR/XS Visual PQL 365

& ditto, i.e. whatever was matched
@c escaped character (@&)
@n tagged substring insertion
An escape sequence consists of the character @ followed by a single character:
@n end of line
@t tab character
@c any other character (including @@)

Examples:

1) Mark numbers with []s:

PROGRAM
c
c Put numbers in square brackets
c
. STRING*80 TEXT
. SET TEXT ("this is 123 or 456 test")
. COMPUTE TEXT = REGrep(TEXT,"[0-9]+","[&]",1,1)
. WRITE TEXT
END PROGRAM

2) Swap Last name and first name + possible initial:

RETRIEVAL
. PROCESS CASES
. PROCESS RECORD 1
. GET VARS NAME
. WRITE [REGREP(NAME," ","@3 "+CHAR(9)+"@1 @2 ",1,1)]
. END RECORD
. END CASE
END RETRIEVAL

3) Find each word in a sentence. In POSIX, the expression \w*(\W|$) matches any
number of letters (\w*) followed by a non-letter (\W) or (|) end of line ($). The expression
\w(\W|$) will find a single letter followed by a non-letter and so point to the end of a
word.

PROGRAM
c
c Find words in a string
c
STRING*80 TEXT
SET TEXT ("Find the words in a string")
SET N (1)
LOOP
. COMPUTE POS1 = REGEXP(TEXT,"\w*(\W|$)",N,3)

SIR/XS Visual PQL 366

. COMPUTE POS2 = REGEXP(TEXT,"\w(\W|$)",N,3)

. IF (POS1 EQ 0) EXIT LOOP

. WRITE "WORD# " N [SBST(TEXT,POS1,1+POS2-POS1)]

. COMPUTE N = N + 1
END LOOP
END PROGRAM

4) Verify entry of an email address. From the start of the line (^) to the @ must contain
one or more (+) alphanumeric characters or ._%- ([A-Za-z0-9._%-]) then one or more
alphanumeric or . - ([A-Za-z0-9.-]). a literal . (\.) followed by two to four ({2,4})
alphabetic characters ([A-Za-z]).

PROGRAM
c
c Check an email address
c
STRING*80 TEXT
SET TEXT ("")
LOOP
. DISPLAY TEXTBOX "Enter a valid email address" response RC,TEXT
. IFNOT (RC GT 0) EXIT LOOP
. IFTHEN (REGEXP(TEXT,"^[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+\.[A-Za-
z]{2,4}$",1,3) EQ 0)
. DISPLAY ERRORBOX " is an invalid email address"
. NEXT LOOP
. ELSE
. DISPLAY INFOBOX "Thank you"
. EXIT LOOP
. ENDIF
END LOOP
END PROGRAM

REGREP

str =
REGREP(string,match_regular_expression,replace_regular_expression,nth,s
tyle)

Searches a string for the nth occurrence of a substring as specified by the regular
expression and replaces that substring as specified by the replace regular expression. The
function returns the updated string. If any errors are found, the unmodified string is
returned. Please see the previous REGEXP function for details on SIR regular expressions.

REPLACE

str = REPLACE(original,search,replace,times,offset,anchor)

SIR/XS Visual PQL 367

If the search string is found in the original string, occurrences are replaced by the replace
string. The number of times the string is replaced, the offset for the next starting position,
and an anchor column are also specified. The following example returns "CABCBCBBAA" if
INLINE is "AABABABBAA".
INLINE = REPLACE (INLINE, 'A','C',3,2,0) When anything but 0 is specified as the
anchor, the string is only replaced once, at the anchor position. The following example
returns "AABCBABBAA" if INLINE is "AABABABBAA".
INLINE = REPLACE (INLINE, 'A','C',3,2,4)

REVERSE

str = REVERSE (str)

Reverses a string.

RKEYSIZE

num = RKEYSIZE (rtnum)

Returns the key length a record type. This is the sum of the key fields of the record type
plus the case identifier in case structured databases.

 RND

num = RND(X [,n])

Returns X rounded to n decimal places. Express n as powers of 10, negative for numbers
smaller than 1. Omit n or specify 0 to round to integers. Rounding is done by adding
0.5*10n to positive numbers, subtracting 0.5*10n from negative then truncating.

RNMFILE

 num = num = RNMFILE (oldname_str,newname_str)

Renames a file from oldname_str to newname_str. Returns 0 for a success and -1 for fail.

ROWCOUNT

num = ROWCOUNT (conid,statid)

Client/Server function. Returns a count of rows created by the execute command. When
using ODBC, this depends on the ODBC source and may not be available (returns -1).

RRECSEC

num = RRECSEC (rtnum)

Returns the read security level for a record type.

SIR/XS Visual PQL 368

RVARSEC

num = RVARSEC (rtnum, varname_str)

Returns the read security level for a variable.

 SARG

str = SARG(num)

Returns string arguments from the parameter list. The argument is the position in the list.
If it is greater than the number of parameters in the list, undefined is returned. (Numeric
parameters are retrieved with the NARG function. NARG(0) returns the number of
parameters in the list.)

 SBST

str = SBST(input_str , start_pos , num_chars)

Returns a substring of the input string. The second argument, start_pos, specifies the
position within the input string where the substring begins. The third argument specifies
the number of characters to retrieve from the input string. If any of the arguments are
undefined or missing, undefined is returned. If the starting position is larger than the
length of the input string, undefined is returned.

 SCROLLAT

num = SCROLLAT(id)

Returns current line number of scrollable gui control.

 SCROLLTO

num = SCROLLTO(id,line)

Sets current line number of scrollable gui control.

 SEEK

num = SEEK(attribute_exp,position)

Sets position of currently open file where position is the number of characters to move
from the current location in the file. If position is -1 it moves to EOF; if position is -2
then it doesn't move and just returns current position; if position is -3 it moves to the start
of the file. To move to an absolute position, first move to the start of the file and then to
the position.

SIR/XS Visual PQL 369

The return value is the new pointer position. The attribute expression is the attribute
associated with this file. To specify this directly (as opposed to specifying a variable
name which contains the attribute), enclose the name in quotes.

 SERADMIN

n = SERADMIN (function_type,server_client_id,password)

Client function for PQLServer. Server administration function.
Function types:
1 - number of server clients
2 - server client id of nth client
3 - close server client id (not us) (password)
4 - server client id logon time
5 - server client id last message time
6 - shutdown server
7 - shutdown server when no clients (password)
The server client id is required on function types 3,4 and 5. Server client ids are returned
by function type 2. Use the nth client number as the client id on function type 2 (0 returns
our server client id). Use 0 on function types 1,6 and 7.
Do not use SERADMIN function type 3 to close this client.

 SERADMIS

str = SERADMIS (function_type,client_id,password)

Client function for PQLServer. Server admin functions that return a string value.
Function types:
1 - address/name of client id (0 returns our name)

 SEREXEC

n = SEREXEC (wait_factor)

Send to server to execute previous sent commands.
0 Wait means return without waiting;
1 means wait one interval, 2 two intervals, etc. The basic server timeout interval can be
set on the sir.ini file- the setting is called server.timeout. If not set, the default is 5
seconds.
Returns completion code:
-1 - Timeout. Note that the server continues to run the request - it is just taking longer
than expected. The SERTEST function can be used subsequently to inquire as to status.
0 Completed OK
1 Completed with warnings
2 Completed with errors
Other values can set by user program on server using the SETRC (RC) function (note user
return codes are returned as positive numbers so should avoid values of 1 or 2).

SIR/XS Visual PQL 370

 SERGET

str = SERGET (number_of_lines_to_skip)

Returns a single line of output. If the number of lines to skip is 0, the next line is
returned, otherwise it is the line after the skipped lines.

 SERLINES

n = (dummy)

Returns the number of lines left. If this function is invoked after lines are returned or
skipped, it returns the remaining number of lines.

 SERLOG

n = SERLOG (Server_name, Password)

Logs on/off to the server. This first logs off any current connection then, if the name of
the server to logon to is not blank, this is used to try to log on to. Returns -1 if the logon
fails. A string containing the password is required. If the server is started with UPASS
specified then the password must match the server administration password. Note that
while specified as a string or string variable, the password is a SIR/XS name and is
uppercase if not a non-standard name in curly brackets {}.

 SERNOOUT

num = SERNOOUT (n)

PQLServer side function that controls SERVER NOOUTPUT flag. If flag is set on, then any
output directed to standard output is thrown away. The flag is set off initially for each
client execution. The setting is still maintained once the program that uses this function
ends.
n = 0 returns setting 1 - On 0 Off
n = 1 sets no output on
n = -1 sets no output off

 SERSEND

n = SERSEND (string)

Sends string to the server. The string is a line of input.

 SERSENDB

n = SERSENDB (buffer_name)

Sends contents of buffer to the server.

SIR/XS Visual PQL 371

 SERTEST

n = SERTEST (wait_factor)

Use if haven't waited for SEREXEC to complete or had a timeout on the execution. Returns
same completion codes as SEREXEC

 SERWRITE

num = SERWRITE (string)

PQLServer side function that writes lines to output regardless of setting of SERVER
NOOUTPUT flag

SETAKL

n = SETAKL(time,password)

Sets the client autokill limit in minutes. If a client is idle for the given number of minutes
then they will be automatically disconnected by master. If master has been started with a
password, this must match the quoted password, otherwise any name can be used.

 SETDFC

n = SETDFC(time,password)

Sets the master difference file copy interval in minutes. If master has been started with a
password, this must match the quoted password, otherwise any name can be used.

 SETDIR

n = SETDIR(directory_name)

Sets the default directory.

 SETPOS

n = SETPOS(id,pos)

Sets the position of a multi-line gui control.

 SETRANGE

n = SETRANGE(id,min,max)

Sets the range of a gui spin/slider/progress control.

SIR/XS Visual PQL 372

Sets the maximum number of characters allowed in an edit or text field (ignoring the
minimum parameter).

 SETRC

n = SETRC(numeric_return_code)

Sets the return code SIR/XS sends to the operating system when it finishes.

 SGET

str = SGET(varname_str)

Returns the value of the specified string variable. The argument is a string variable,
quoted string constant or string expression whose value is the name of a common, record
or program variable.

SGLOBAL

str = SGLOBAL(varname_str)

Returns the string value of a global variable. The argument is a string variable, constant
or expression that specifies a global variable name. If it is not the name of a defined
global variable, undefined is returned. Use the NGLOBAL function for numeric global
variables.

 SIGN

num = SIGN(num_X , num_Y)

Transfers the sign (positive or negative) of num_Y to the absolute value of num_X. Zero is
positive.

 SIN

num = SIN(radnum)

Returns the trigonometric sine of radnum, where radnum is specified in radians.

 SIRUSER

name = SIRUSER(name)

Sets/returns the current SIR/XS user name. This is written to the database journal to
identify the person who entered particular sets of database updates. Specify a name (up to
32 characters). No translation (upper/lower case, etc.) is done. To simply return the
current user name, pass either a missing name or a zero length name.

SIR/XS Visual PQL 373

USER = SIRUSER ('') returns existing name to string variable USER
USER = SIRUSER ('Mr. J. Smith') sets the name and returns it to string variable
USER.

SMAX

str = SMAX (rtnum , varname_str)

Returns the maximum valid string value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

SMIN

str = SMIN (rtnum , varname_str)

Returns the minimum valid string value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

 SPREAD

str = SPREAD (input_str)

Returns a string with a blank inserted between each character of the input string.

 SPUT

str = SPUT (varname_str, str)

Stores the value of string argument str in the specified string variable. The variable
name argument is a string variable name, quoted string constant or string expression
whose value is the name of a common, record or program variable. The value returned by
the function is the value stored in the variable (possibly undefined, missing, etc.). If the
variable refers to a common or record variable, the Retrieval must be in UPDATE mode.

 SQRT

num = SQRT(X)

Returns the square root of X. Missing is returned for negative values.

 SRCH

num = SRCH(varX , varY , Z)

Returns the location of the value Z in the table of values VarX to VarY, where VarX and
VarY are local numeric variables defined in the program from VarX to VarY. These

SIR/XS Visual PQL 374

cannot be arrays or string variables. The values in the variables must be in ascending
order.

For example, if Z matched the fourth value in the table, SRCH returns 4. If no match is
found, a negative value is returned. The value indicates the correct position for Z for in
the table. For example:

SET INCOME1 TO INCOME8 (1,1.5,2.2,2.5,3,3.1, 3.5, 4)
COMPUTE LOC = SRCH (INCOME1,INCOME8,SALARY)
If SALARY has the value 3.5, the function returns 7, because the seventh variable has the
value 3.5. If SALARY has the value 2, the function returns the value -3 indicating that the
value is not present, and that the correct place in the list is in the third position.

 SREAD

str = SREAD(prompt)

Pops up a box on the screen with the specified prompt and returns a string from the user.
The maximum input is 4094 characters; long strings are scrolled horizontally.

 SRST

num = SRST (strX ,strY)

Returns the column number within strX that matches strY. If strY is delimited by
characters other than letters or numbers, SRST returns a positive number, otherwise SRST
returns a negative value. If strY is not a substring of strX, SRST returns a zero value. The
length of strX must be greater than or equal to the length of strY. For example:

POS1 = SRST ('BUBBLE GUM','GUM') results in: POS1 = 8
POS2 = SRST ('ANITA TINKLE',' ') results in: POS3 = -6

STATTYPE

num = STATTYPE (rtnum , varname_str)

Indicates if the variable is a control or observation variable. If the record number (rtnum)
is negative, the function applies to a summary variable; if rtnum is one more than the
maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
0 = not a control or observation variable
1 = observation var
2 = control var

 STDEV

num = STDEV(X1 , X ,...., Xn)

SIR/XS Visual PQL 375

Returns the standard deviation for the values in the list that are not missing or undefined.
If fewer than 2 values are not missing or undefined, a value of undefined is returned.

 STDEVR

num = STDEVR(varname)

Returns the standard deviation for the values of the specified variable encountered during
a PROCESS REC or PROCESS ROWS loop that are not missing or undefined. If fewer than 2
values are not missing or undefined, a value of undefined is returned.

 STDNAME

name = STDNAME(name)

Checks if name is standard and puts curly brackets around non-standard names. The
function ignores leading and trailing spaces and any trailing characters over legal name
length. If the name has leading or trailing quotes or curly brackets, these are stripped off.
A standard name starts with an uppercase letter and contains only uppercase letters, digits
or the four characters $, #, @, and _. If it is a standard name, it is returned left justified.
(Note that this function does NOT translate lower case letters to uppercase. Any
lowercase means that the name is non-standard.
If it is a non-standard name, it is wrapped in curly brackets and returned left justified. If a
name has embedded curly brackets, undefined is returned.

SUBDIR

 str = SUBDIR (dir_str,sub_str)

Concatenates a subdirectory name to a directory path in correct system specific manner
e.g.: DIR = SUBDIR(CURDIR(0),"data") returns a string like C:\SIR_XS\data\ under
windows or /usr/SIR/XS/data/ under unix.

SUBSTR

str = SUBSTR(string,start,len)

Same as SBST function. Returns a null string if the starting position is outside the length
of the string.

 SUM

num = SUM(X1 , X ,...., Xn)

Returns the sum of the values in the list that are not missing or undefined. The maximum
number of variables allowed in the argument list is 128. Arguments must be numeric.

 SUMR

SIR/XS Visual PQL 376

num = SUMR(X)

Returns the sum of the values of X encountered during a PROCESS REC or PROCESS ROWS
loop that are not missing or undefined.

SVVAL

str = SVVAL (rtnum , varname_str , n)

Returns the value of the nth valid value of a categorical string variable. If the record
number (rtnum) is negative, the function applies to a summary variable; if rtnum is one
more than the maximum record count (i.e. NRECS(0)+1) then this applies to a standard
variable.

 SYSTEM

num = SYSTEM(X)

Extracts a wide variety of information from an executing VisualPQL program set. Some
return undefined if not in a RETRIEVAL.

Number Return Value
SYSTEM(1) The CPU time elapsed since beginning of run
SYSTEM(2) A platform number, for example:

3 Sun Risc Solaris
7 Compaq Tru64 Unix
8 Compaq Alpha OpenVMS
10 IBM AIX
12 HP 9000 HP-UX
13 Silicon Graphics IRIX
26 Intel Linux
27 MS Windows
28 Macintosh

SYSTEM(3) The update level for the current case/record. This is the update level at
which this was last written. If it has previously been updated in the current
update run, it is 1 greater than the database update level (system(23)).

SYSTEM(4) 1 if current case is available for processing, returns a 0 if current case is not
available for processing

SYSTEM(5) 1 if current case has been modified, returns a 0 is current case has not been
modified

SYSTEM(6) 1 if current record is available for processing, returns a 0 if current record
is not available for processing

SYSTEM(7) 1 if current record has been modified, returns a 0 if current record has not
been modified

SIR/XS Visual PQL 377

SYSTEM(8) If current case is available for processing, returns the number of records of
all types belonging to the current case

SYSTEM(9) The current output file page number
SYSTEM(10) The lines remaining on current output file page
SYSTEM(11) The total number or errors in the session
SYSTEM(12) The number of errors during the current task
SYSTEM(13) The number of warnings during the current task
SYSTEM(14) 1 if last CASE IS block was executed, returns a 0 if last CASE IS block was

not executed
SYSTEM(15) 1 if last CASE IS block created a case, returns a 0 if last CASE IS block did

not create a case
SYSTEM(16) 1 if last RECORD IS block was executed, returns a 0 if last RECORD IS

block was not executed
SYSTEM(17) 1 if last RECORD IS block created a record, returns a 0 if last RECORD IS

block did not create a record
SYSTEM(18) The current row block number
SYSTEM(19) The current row block position. Can be used to save a row position and

retrieve the data with an OLD ROW IS AT (block,pos)
SYSTEM(20) The number of cases (CIRs) created during current run
SYSTEM(21) The number of cases (CIRs) updated during current run
SYSTEM(22) The number of cases (CIRs) deleted during current run
SYSTEM(23) The database update level
SYSTEM(24) The number of cases in database
SYSTEM(25) The number of data records in database
SYSTEM(26) The line width of current output page
SYSTEM(27) 1 if the last ROW IS block was executed, returns a 0 if the last ROW IS block

was not executed
SYSTEM(28) 1 if the last ROW IS block created a row, returns a 0 if the last ROW IS block

did not create a row
SYSTEM(29) 1 if the current row is available for processing, returns a 0 if the current

row is not available for processing
SYSTEM(30) 1 if the current row was modified, returns a 0 if the current row was not

modified
SYSTEM(31) The row ordinal of the current row
SYSTEM(32) The number of rows in the table
SYSTEM(33) Not used
SYSTEM(34) The amount of table space, in SIR double words, used for the VisualPQL

SIR/XS Visual PQL 378

execution stack
SYSTEM(35) The amount of table space, in SIR double words, used for the program

schema maps
SYSTEM(36) 1 if the current record is available. A 0 (zero) is returned if access to the

current record is denied for concurrent operations because the record is
locked by another process with a non-compatible lock type

SYSTEM(37) 1 if the current CIR is available. A 0 (zero) is returned if access to the
current CIR is denied because the CIR is locked by another process with a
non-compatible lock type

SYSTEM(38) 1 if the session is a concurrent session using Master. A 0 (zero) is returned
if this is a normal, single-user session

SYSTEM(39) The ordinal number of the default database. No connected database returns
0

SYSTEM(40) Indicates the number of connected databases. This returns the size of the
connected database table that may include entries for disconnected
databases since the position number associated with a particular connected
database never changes.

SYSTEM(41) The default string size
SYSTEM(42) The Editor Type setting number
SYSTEM(43) The Error Limit setting (num)
SYSTEM(44) Encryption on for database (1 on, 0 off)
SYSTEM(45) The current user has DBA rights (1 yes ,0 no)
SYSTEM(46) The Page Length setting (num)
SYSTEM(47) The Page Width setting (num)
SYSTEM(48) The Loading Factor setting (num)-real
SYSTEM(49) The Sort Number (SORTN) setting (num)
SYSTEM(50) The Sort option (Obsolete)
SYSTEM(51) The Warning Limit setting (num)
SYSTEM(52) The Number of Attribute settings
SYSTEM(53) The Number of Global variables set
SYSTEM(54) The number of database data files. 0=standard
SYSTEM(55) The Century split year
SYSTEM(56) The number of Buffers defined
SYSTEM(57) The number of families in the default procfile
SYSTEM(58) Printback (1 on, 0 off)
SYSTEM(59) Printback dorepeat (1 on, 0 off)
SYSTEM(60) Printback calls (1 on, 0 off)

SIR/XS Visual PQL 379

SYSTEM(61) Printback task stats (1 on, 0 off)
SYSTEM(62) Printback remarks (1 on, 0 off)
SYSTEM(63) Printback skipped commands (1 on, 0 off)
SYSTEM(64) Printback user created attributes (1 on, 0 off)
SYSTEM(65) Printback quiet (1 on, 0 off)
SYSTEM(66) Master Backup Interval
SYSTEM(67) Backup Count
SYSTEM(68) Number of Master clients
SYSTEM(69) Number of Master attached databases
SYSTEM(70) Password on default member? (1 Yes, 0 No)
SYSTEM(71) Default member type (1 :T; 2 :E; 3 :P; 4 :O; 5 :V; 6 :M)
SYSTEM(72) Default member public (1 Yes, 0 No)
SYSTEM(73) Length in bytes of default member
SYSTEM(74) Creation date of default member
SYSTEM(75) Creation time of default member
SYSTEM(76) Modification date of default member
SYSTEM(77) Modification time of default member
SYSTEM(78) Family password on default family? (1 Yes, 0 No)
SYSTEM(79) Lines in default member
SYSTEM(80) Status of window paging. Paging on returns 1

TABINDN

 str = TABINDN (fn,tn,in)

Returns the index name of nth index. See TABINDS.

TABINDS

 num = TABINDS(fn,tn)

Returns the number of indexes on nth table.

TABINDT

 str = TABINDT (fn,tn,in,vn)

Returns the variable name and sort sequence of nth variable on index.

TABINDU

SIR/XS Visual PQL 380

 num = TABINDU (fn,tn,in)

Returns whether nth index is unique 0 - Not unique, 1 - Unique.

TABINDV

 num = TABINDV (fn,tn,in)

Returns the number of variables in nth index.

TABNAME

 str = TABNAME(fn,tn)

Returns the name of nth table. TFTABS(fn) returns number of tables on nth tabfile.

TABRECS

 n = TABRECS(fn,tn)

Returns the number of rows on the nth table. TFTABS(fn) returns number of tables on
nth tabfile.

TABVARS

 num = TABVARS(fn,tn)

Returns the number of variables in nth table.

TABVINFN

 num = TABVINFN(fn,tn,vn,n)

Returns various numeric data about the nth variable in nth table. The type of data is set by
the fourth parameter as follows:

 1 = Count of value labels
 2 = leading zero
 3 = print this column
 4 = null not allowed
 5 = ON if value labels printed
 6 = set break variable
 7 = option G on break
 8 = option C on break
 9 = option P on break
 10 = var label as col heading
 11 = unique flag
 12 = subtotal title to the left
 13 = count of ranges
 14 = SIR data type

SIR/XS Visual PQL 381

TABVINFS

 str = TABVINFN(fn,tn,vn,n)

Returns various string data about the nth variable in nth table. The type of data is set by
the fourth parameter as follows:

 1 = variable label
 2 = LNEG
 3 = LPOS
 4 = NULL
 5 = ZERO
 6 = TNEG
 7 = TPOS
 8 = SEPARATE
 9 = date/time format (COL should have date/time type)
 10= break string

TABVNAME

 str = TABVNAME(fn,tn,vn)

Returns the variable name for vnth var on tnth table.

TABVRANG

 str = TABVRANG(fn,tn,vn,rn)

Returns a string representation of the value(s) for the rnth range for vnth var on tnth table.
String starts with keyword VALID or MISSING to indicate the type of range. Then string
may have two values separated by :. Also may contain keywords BLANK, LOWEST and
HIGHEST.

TABVTYPE

 str = TABVTYPE(fn,tn,vn)

Returns the variable type for vnth var on tnth table.

TABVVALI

 n = TABVVALI(fn,tn,vn,expr)

Validates the value in the expression (numeric or string) against the vnth var on tnth
table. Returns a code indicating whether a value is allowed in a variable. The codes are:

0 = Valid value
Negative = Error detected
2 = Violation of specified valid values or ranges

SIR/XS Visual PQL 382

3 - n Missing value 0 to n
4 = Missing value 1
5 = Missing value 2, etc.

TABVVLAB

 str = TABVVLAB(fn,tn,vn,vln)

Returns the label for the vlnth value label for vnth var on tnth table.

TABVVVAL

 str = TABVVVAL(fn,tn,vn,vln)

Returns the value for the vlnth value label for vnth var on tnth table.

 TAN

num = TAN(X)

Returns the trigonometric tangent of X, where x is in radians. If X is an odd integral
multiple of p/2 (e.g., p/2, 3p/2, 5p/2, etc.), the value of undefined is returned.

 TANH

num = TANH(X)

Returns the hyperbolic tangent of X.

TFACCESS

 str = TFACCESS(fn)

Returns the access type a(uto),r(ead) w(rite) of nth tabfile.

TFATTR

 str = TFATTR(fn)

Returns the internal attribute name of nth tabfile. This is the same as the tabfile name.

TFCOUNT

 num = TFCOUNT(dum)

Returns the number of connected tabfiles.

TFFILE

SIR/XS Visual PQL 383

 str = TFFILE(fn)

Returns the filename of nth tabfile.

TFGRNAME

 str = TFGRNAME(fn)

Returns the group name of nth tabfile.

TFGRPW

 str = TFGRPW(fn)

Returns the group password of nth tabfile.

TFJNNAME

 str = TFJNNAME(fn)

Returns the journal name of nth tabfile.

TFNAME

 str = TFNAME(fn)

Returns the name of nth tabfile.

TFTABS

 num = TFTABS(fn)

Returns the number of tables on nth tabfile.

TFUSNAME

 str = TFUSNAME(fn)

Returns the user name of nth tabfile.

TFUSPW

 str = TFUSPW(fn)

Returns the user password of nth tabfile.

 TIME

num = TIME(X)

SIR/XS Visual PQL 384

Returns an integer that is the number of seconds from midnight. The input argument, X,
is an integer in the range 0 - 235959; the first two digits are hours, the next two are
minutes and the last two are seconds. For example, to calculate the number of seconds
from midnight to 8:30 AM.
SLEEPSEC = TIME(083000)

 TIMEC

str = TIMEC(X , time_format)

Converts an integer, X, into a time formatted string. See time formats for a complete
description. Values of X that are out of range are returned as undefined. For example:

WAKESTR = TIMEC(ALARM, 'HH:MM:SS')

TIMEMAP

str = TIMEMAP (rtnum, varname_str)

Returns a string with the time format (map) of the specified time variable. If the variable
is not a time variable, undefined is returned. For example, TIMESTR equals "HH:MM:SS"
if time variable INTIME has that time format. If the record number (rtnum) is negative, the
function applies to a summary variable; if rtnum is one more than the maximum record
count (i.e. NRECS(0)+1) then this applies to a standard variable.

TIMESTR = TIMEMAP (1, 'INTIME')

 TODAY

num = TODAY(dummy)

Returns the "date integer" representation of the current date. The argument is a dummy
numeric argument (specify 0).

 TRIM

str = TRIM(string_expression)

Deletes trailing blanks from the string expression.

TRIML

str = TRIML(string_expression)

Deletes leading blanks from the string expression.

 TRIMLR

str = TRIMLR(string_expression)

SIR/XS Visual PQL 385

Deletes leading and trailing blanks from the string expression.

 TRIMR

str = TRIMR(A)

See TRIM function.

TRUNC

num = (X [,n])

See AINT function.

TSTODT

date = TSTODT (timestamp)

Takes a real*8 timestamp (produced by DTTOTS and returns the date integer component.

TSTOTM

time = TSTOTM (timestamp)

Takes a real*8 timestamp (produced by DTTOTS and returns the time integer component.

 TWRITE

str = TWRITE(string_expression)

Writes the specified string expression to the scrolled output window. This function can be
useful when a program is run with an alternate output file (i.e., with the interactive SET
OUTPUT command) and can only be used during an interactive session.

UPDLEVEL

num = UPDLEVEL (0)

Returns the current database update level. (Same as SYSTEM(23).)

UPGET

 str = UPGET (key_str)

Gets string value (User Preference) identified by key_str (from sir.ini file)
e.g. COMPUTE TITLE= UPGET('SIR.TITLE')

 UPPER

SIR/XS Visual PQL 386

str = UPPER(string_expression)

Changes lowercase letters to uppercase.

UPSET

 num = UPSET (key_str,val_str)

Sets string value (User Preference) identified by key_str (in sir.ini file). Returns zero
for success, -1 for failure.
e.g. COMPUTE rc= UPSET('SIR.TITLE','SIR/XS')

VALIDATE

num = VALIDATE (rtnum, varname_str ,value)

Returns a code indicating whether a value is allowed in a variable. If the record number
(rtnum) is negative, the function applies to a summary variable. The codes are:

0 = Valid value
1 = Wrong data type/Not valid value
2 = Violation of specified valid values or ranges
3 = Missing value 0 (Undefined or system missing value)
4 = Missing value 1
5 = Missing value 2
6 = Missing value 3

 VALLAB

str = VALLAB(varname)

Returns a character string containing the value label for the current value of the specified
variable. If there is no label defined for the value, a zero length string is returned. The
argument is a variable name, not a constant or expression.

VALLABSC

str = VALLABSC (rtnum,varname_str,value)

Returns the value label (up to 78 characters) for the specified value of a variable. If the
record number (rtnum) is negative, the function applies to a summary variable; if rtnum is
one more than the maximum record count (i.e. NRECS(0)+1) then this applies to a
standard variable.
The value can be numeric or string.

For example, suppose the fourth value label for a variable DIVISION in record type 2 has
value 10, label 'Head Office' then:

SIR/XS Visual PQL 387

THISPOS = VALLABSC (2, 'DIVISION',10)

returns 'Head Office'.

VALLABSN

str = VALLABSN (rtnum, varname_str , n)

Returns the nth value label for a variable (up to 78 characters). If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
Note that the number of labels is returned by NVALLAB.

For example, suppose the fourth value label for a variable DIVISION in record type 2 has
value 10, label 'Head Office' then:

THISPOS = VALLABSN (2, 'DIVISION',4)

returns 'Head Office'.

VALLABSP

n = VALLABSP (rtnum, varname_str , value)

Returns the position (nth) of the specified value associated with value labels for a
variable. If the record number (rtnum) is negative, the function applies to a summary
variable; if rtnum is one more than the maximum record count (i.e. NRECS(0)+1) then
this applies to a standard variable.
The value can be numeric or string.

For example, suppose the fourth value label for a variable DIVISION in record type 2 has
value 10, label 'Head Office' then:

POS = VALLABSP (2, 'DIVISION',10)

returns 4.

VALLABSV

str = VALLABSV (rtnum, varname_str , n)

Returns the nth value associated with value labels for a variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
Note that the number of labels is returned by NVALLAB.

SIR/XS Visual PQL 388

For example, suppose the fourth value label for a variable DIVISION in record type 2 has
value 10, label 'Head Office' then:

THISPOS = VALLABSV (2, 'DIVISION',4)

returns '10'.

VARDOCSN

str = VARDOCSN (rtnum, varname_str,line_no)

Returns the nth line of documentation for a variable. Use the NVARDOC function to find
total number of lines. (Note that variable documentation does not apply to summary
variables. Simply use comment lines in programs to document.) In the following
example, if MARSTAT in record type 1 has a single line of variable documentation of
"Current marital status of employee", then COLDESC is set to that string value.".
COLDESC = VARDOCSN (1, 'MARSTAT', 1)

VARGET

str = VARGET (expression)

Returns a string representation of the value in the variable named in the expression. This
works on all variable types. It converts catvar, date, time, integer and real to a string
according to the format of the specified variable as per the VFORMAT function. Specify a
string variable or expression that contains the name of another variable. For example:

INTEGER*1 INT1
STRING*8 STR1 STR2
COMPUTE INT1 = 1; STR1 = 'INT1'
COMPUTE STR2 = VARGET (STR1)
WRITE STR1 STR2

Output is: INT1 1

 VARLAB

str = VARLAB(varname)

Returns the variable label (up to 78 characters) for a variable. If there is no label defined
for the variable, the variable name is returned. The argument is a variable name, not a
constant or expression. If the function is compiled in a record block, a record variable can
be specified. If the function is compiled in a case block, a common variable can be
specified. If the function is outside and record or case block, then specify a local,
summary variable.

VARLABSC

SIR/XS Visual PQL 389

str = VARLABSC (rtnum, varname_str)

Returns the label (up to 78 characters) for a variable. If there is no label defined for the
variable, the variable name is returned. The first argument is the record number where the
variable occurs or 0 for common variables. Use a negative value to specify a local,
summary variable. The second argument is a constant (in quotes) or an expression that
resolves to a variable name. In the following example, if MARSTAT in record type 1 has a
variable label of "Marital Status", then COLHEAD equals "Marital Status".
COLHEAD = VARLABSC (1, 'MARSTAT')

VARNAME

string = VARNAME (rtnum,varnum)

Returns the name of the specified variable. The first argument is the record number
where the variable occurs or 0 for common variables. Use a negative value to specify a
local, summary variable. The second argument is the number of the variable (not
including common vars). Variables are numbered in the order they are defined in the
record schema definition. If the name is a non-standard name, it is returned enclosed in
curly brackets {}.

VARNAMEC

string = VARNAMEC (rtnum,varnum)

Returns the name of the specified variable. The first argument is the record number
where the variable occurs; the second argument is the number of the variable (including
common vars). Variables are numbered in the order they are defined in the record schema
definition.

VARLENG

num = VARLENG (rtnum,varname)

Returns the data length of the specified variable. The first argument is the record number
where the variable occurs; the second argument is the name of the variable.

VARPOSIT

num = VARPOSIT (rtnum,varname)

Returns the position in the data record of the specified variable. The first argument is the
record number where the variable occurs; the second argument is the name of the
variable.

VARPUT

num = VARPUT(var_exp,string)

SIR/XS Visual PQL 390

Places the value from the second argument into the first argument converting from a
string to a numeric value if necessary. Var_exp contains the name of a variable. If the
variable is a numeric variable, the string is converted to the appropriate numeric value
and stored in the variable.

Returns the same numeric values as VALIDATE.

0 = Valid value
1 = Wrong data type/Not valid value
2 = Violation of specified valid values or ranges
3 = Missing value 0 (Undefined or system missing value)
4 = Missing value 1
5 = Missing value 2
6 = Missing value 3

For example:

COMPUTE RES = VARPUT ('BIRTHDAY','12/31/50')

VARTYPE

 num = VARTYPE(varname_str)

Returns an integer code representing the type of the specified variable. The argument is a
string variable, quoted string constant or string expression whose value is the name of a
common, record or local variable. Codes are:

0 if variable is string
1 if variable is numeric
undefined if variable is undefined

VFORMAT

str = VFORMAT (rtnum , varname_str)

Returns a string representing the format of the specified variable (for example, A20, F9.2,
D'MMIDDIYY', etc.) If the record number (rtnum) is negative, the function applies to a
summary variable; if rtnum is one more than the maximum record count (i.e.
NRECS(0)+1) then this applies to a standard variable.
In the following example, if variable NEWSAL in record type 3 is a four digit integer, then
XFMT equals "I4".

XFMT = VFORMAT (3, 'NEWSAL')

VTYPE

num = VTYPE (rtnum , varname_str)

SIR/XS Visual PQL 391

Returns an integer code representing the type of the variable, where:

1 = string
2 = categorical
3 = date
4 = time
5 = integer
6 = real (single precision)
7 = real (double precision)
8 = scaled variable

If the record number (rtnum) is negative, the function applies to a summary variable; if
rtnum is one more than the maximum record count (i.e. NRECS(0)+1) then this applies to
a standard variable.

WACCESS

num = WACCESS (dummy)

Returns the write security access level of the current user (the level corresponding to the
write security password entered).

WINCNT

num = WINCNT (0)

Returns the number of lines in the output window

WINLIN

str = WINLIN (n)

Returns the nth line from the output window

WINMOVE

num = WINMOVE (x,y,w,h)

Moves and resizes the main window. The window is placed at horizontal position
x,vertical position y, size width w by height h. The horizontal units are 1/4 of the average
width for the font being used. The vertical units are 1/8 font height. If w or h is zero the
window is minimized; if w or h < 0, the window is restored to its original position (before
being minimised).

WINPOS

num = WINPOS (line,pos,len)

SIR/XS Visual PQL 392

Moves to line in output window and highlights from pos to len on that line

WINSELL

num = WINSELL(n)

Returns the line selected. 0 returns the current cursor line. 1 returns beginning line of
selection. 2 returns ending line of selection.

WINSELP

num = WINSELP(n)

Returns the position in the line selected. 0 returns the current cursor position. 1 returns
beginning position of selection. 2 returns ending position of selection.

WRECSEC

num = WRECSEC (rtnum)

Returns the write security level for a record type.

WVARSEC

num = WVARSEC (rtnum , varname_str)

Returns the write security level for a variable.

YESNO

num = YESNO(strX)

Displays a question box with the specified text and returns response. 1 indicates Yes; 0
indicates No.

SIR/XS Visual PQL 393

The VisualPQL Debugger
 Errors may be encountered in developing VisualPQL programs. Syntax may be
incorrectly specified. Syntax errors are detected by the VisualPQL compiler and reported
with Error and Warning Messages during compilation.

Errors may also occur during program execution that prevent successful running of the
program. Typically these errors might be files not being found, when no provision has
been made to handle the error or subscript references outside the bounds of the allowable
range.

The program may compile and run but not perform as expected. Errors in programming
logic are typically referred to as program bugs. The VisualPQL GUI debugger can assist
in locating program bugs.

SIR/XS Visual PQL 394

Error Messages

Error messages can be issued at compile time or at run time. Error messages have a
number and explanatory text. These are printed at the point where the error has occurred.
Errors can be related back to the original source line through line numbers. As the source
lines are read, these are assigned an input number. This is a two part number such as 2.3
or 3.7. The first part refers to the level of the source input. If source is read directly, it is
level 1, if it is included through a CALL, it is level 2 and so on. Various text inclusion
commands increase this level, some of which are internal. For example, any text RUN
through the menu system starts at level 2.

Each line is then assigned a sequential input line number within that level. The lines that
cause any text inclusion are also assigned numbers. Some text inclusion commands are
generated internally. Lines generated through a DO REPEAT do not have numbers since
they are not part of the input text.

The VisualPQL program lines are also assigned an internal address referred to as the
Stack Location. This is where that command is located during the execution of the
program and is referred to by any run time error message. This number ascends but has
gaps because most commands take multiple stack locations.

For a full listing of the input use PRINT BACK ON. This gives a listing such as:

1.1 CALL TEST.ERROR:T
2.1 00001 program
2.2 00001 compute a = 1
2.3 call inctext
3.1 00003 a = 1
3.2 00005 a = 1
3.3 00007 a = 1
2.4 do repeat x = 1 2 3
2.5 compute a = x
2.6 end repeat
(REPEAT) 00009 compute a = 1
(REPEAT) 00011 compute a = 2
(REPEAT) 00013 compute a = 3
2.7 00015 end program

Debug Mode

If the DEBUG keyword is specified on the PROGRAM, SUBROUTINE or RETRIEVAL
command, the routine is compiled in debug mode. and the debuggers can be used with
the routine. This assigns an internal line number to each command or part of a command
that can be executed and stores the source text of the routine as part of the executable.

Compile Errors

SIR/XS Visual PQL 395

If an error is found during a compilation, the line where the error is detected is listed
together with an explanatory message. The line has both the input line number and the
stack location listed.

Run Time Errors

If an error is detected during the execution of a program, an error message is displayed.
This lists the error together with some information to enable you to locate the code that
caused the problem. This is referred to as a "Traceback of error condition". It lists the
routine, a line number and a stack location.

The routine is "MAIN" if the main program is being executed or is the name of a sub-
routine that is being executed.

If the routine has been compiled in debug mode, then an internal line number is assigned
to executable parts of the code and this line number is displayed during a debug run. It is
not the input sequence number. If the routine has been compiled in debug mode, the
source text of the line causing the problem is also displayed.

The stack location is always displayed and is the stack location listed on the PRINT BACK.
Use this to locate the line causing the problem.

SIR/XS Visual PQL 396

Overview to the VisualPQL GUI Debugger

A debugger provides a means of following the execution path through the program
statements. Execution can be suspended at any point to examine the values of program
variables. In this way the developer can determine where an incorrect branch is taken or
if a variable has the expected value.

The VisualPQL debugger is itself a VisualPQL program that uses particular debug
functions to interact with the executing system. If you wanted to, you could use these
functions to develop a different interface to the debugger but you do not need to use these
functions simply to debug your own programs. To avoid confusion, these functions are
not documented here, please contact SIR support for details, if you need them.

Using the debugger requires additional memory beyond that needed by the program. As a
VisualPQL program is compiled, source commands are converted into operating codes
that are the executable program and these are held in the command stack. When the
DEBUG option is specified on the RETRIEVAL, PROGRAM or SUBROUTINE commands, the
compiler keeps the text of each command along with the corresponding operating code in
the stack (which is why the debugger requires much more memory). Each command in
the stack is assigned a command number that is used for internal reference and is used on
several commands that display the contents of the stack. These numbers are not editor
line numbers or the line numbers in a source code listing.

The following discusses the VisualPQL debugger and the options that are available.

To start the debugger, first compile a program with the DEBUG keyword then select
Debug... from the Program menu. Select the compiled object (SYSTEM.DEBUG:O is the
default) from the member list.

SIR/XS Visual PQL 397

The VisualPQL Debugger

Source

The currently selected line number is displayed in the top left. This is not necessarily the
line that is about to be executed but it is the line that is effected by the Set.BreakPoint
and Run-to-here buttons.

The Set BreakPoint button sets or clear a breakpoint on the selected line. A breakpoint is
a command where execution stops before that command is executed.

The Step Into Subroutines box if checked and subroutines are compiled with debug,
means that the source of the subroutines are displayed when they are executed.

Press Next to execute next command and moves the selected line to the next executable
line.

SIR/XS Visual PQL 398

Press Continue to run until a breakpoint or watchpoint is hit or the program ends.

Run-to-here executes all lines until the selected line is reached.

Run-to-end executes the program ignoring all breakpoints and watchpoints.

Exit stops debugging, stops the program execution and closes the debugger.

The Files, Members and Buffers buttons let you open, edit files members and buffers.

The Globals and Attributes buttons let you view and modify global variables and file
attributes.

Clear Output clears the main window output area.

The Program source code lines are displayed in the large listing area. Note that the line
that is about to be executed is marked with a » character and the selected line is
highlighted.

Data

The Bottom left of the debugger deals with program variables. Selected variables and
their values are displayed in the list. By default, no variables are selected for display.

Press View to select variables of interest or to change the order that they are displayed.
The most recently selected are displayed first.

Press Modify to change the value of a variable.

Press Set Watchpoint to set a watchpoint on or off on the selected variable. A
watchpoint means that execution stops on the command after the command that changes
the value in that variable. An active watchpoint is indicated with a ¤

Press Clear All to remove all watchpoints.

Double click on a variable to modify its value.

When a variable is selected from the list, its value is displayed at the bottom of the
screen. If it is a string variable then blanks are shown with a dot (·).

Stack

The bottom right of the debugger shows the program stack. This indicates the levels of
called subroutines that have been traversed to get to the current point and lets you view
and navigate through levels of subroutine source. The routine currently being executed is
shown at the top of the list.

SIR/XS Visual PQL 399

Press Up to move to the source that called the currently displayed source.

Press Down to return one level to the source of the called subroutine (after pressing up).

Press ->|<- to return to the subroutine source and line about to be executed.

You can double click on a routine to view its source.

How to debug a program

A small program could be debugged by viewing all variables and pressing Next through
each line of the program until the problem is detected. View the values of variables and
expressions to determine why the program is behaving unexpectedly.

In a larger program, you probably need to set breakpoints or watchpoints to stop
execution and return to the debugger when a particular line is about to be executed or
when the value of a given variable is changed. After setting a breakpoint on a source line
or a watchpoint on a variable, press continue to execute the program. The following
example is a small program that is easily debugged but is worked through in detail to
show a debugging process.

This example program is meant to extract first name, last name and middle initial from a
string containing a full name. The problem is that last name is not being calculated
properly.

SUBROUTINE FMLNAME (NAME) RETURNING (FNAME,MINIT,LNAME) REPLACE
NODATABASE DEBUG DYNAMIC
. STRING*50 NAME
. STRING FNAME MINIT LNAME
. INTEGER FSPACE LSPACE
. SET FNAME MINIT LNAME ("")
. COMPUTE FSPACE = ABS(SRST(NAME," "))
. COMPUTE LSPACE = LEN(NAME) + 1 - ABS(SRST(REVERSE(NAME)," "))
. COMPUTE FNAME = SBST(NAME,1,FSPACE-1)
. COMPUTE LNAME = SBST(NAME,LSPACE+1,LEN(NAME)-LSPACE)
. IF (LSPACE NE FSPACE) COMPUTE MINIT = SBST(NAME,FSPACE+1,1)
END SUBROUTINE

RETRIEVAL DEBUG
. STRING FNAME MINIT LNAME
. PROCESS CASES
. PROCESS RECORD 1
. EXECUTE SUBROUTINE FMLNAME (NAME) RETURNING (FNAME,MINIT,LNAME)
. WRITE NAME
. WRITE FNAME " / " MINIT " / " LNAME
. END RECORD
. END CASE
END RETRIEVAL

SIR/XS Visual PQL 400

Start retrieval execution
John D Jones
John / D / *
James A Arblaster
James / A / *
Mary Black
Mary / B / *
...

The problem is in extracting components from the variable NAME in record 1 so start by
setting a breakpoint near the start of that record block.

Setting a BreakPoint

Then press continue. Execution stops on that line.

Check the step into subroutine box so that you are able to debug the called subroutine and
press next. You should now be looking at the subroutine source.

We know the computation of last name (and middle initial) is not working so put a break
on

. COMPUTE LNAME = SBST(NAME,LSPACE+1,LEN(NAME)-LSPACE)

In the Data section Press View, select all variables and press OK. Looking at the data
section we see NAME is John D Jones, LSPACE (the last occurrence of blank in the
name string) is 25 where we were expecting 7.

SIR/XS Visual PQL 401

At this point we could work out the problem but for sake of the example, put a
watchpoint on LSPACE so we can find the next time it is modified and clear the
breakpoint on LNAME (select it and press set breakpoint).

Setting a WatchPoint

Press continue and execution stops at the breakpoint at the start of the record 1 block in
the main routine.

Press continue again and execution stops after the line that has set the value of LSPACE:

. COMPUTE LSPACE = LEN(NAME) + 1 - ABS(SRST(REVERSE(NAME)," "))

Select NAME from the data list and you see its value displayed at the bottom of the
screen padded with blanks to 25 - so the last blank is at 25.

Repeat the process but press next rather than continue when executing the subroutine.
Use the modify button in the data section to remove trailing blanks from the name and
step through the computes to see that the program is working correctly.

So the fix is to remove the trailing blanks from NAME when calculating the positions of
the blanks.

...
. COMPUTE NAME = TRIM(NAME)
. COMPUTE FSPACE = ABS(SRST(NAME," "))
. COMPUTE LSPACE = LEN(NAME) + 1 - ABS(SRST(REVERSE(NAME)," "))
...

Exit the debugger, make the program change and run it again.

SIR/XS Visual PQL 402

- OPERATOR ... 75
$ PICTURE .. 130
* ASTERISK .. 82
* I/O FORMAT 124, 131
* OPERATOR .. 75
** OPERATOR....................................... 75
, PICTURE ... 130
. PERIOD... 19
. PICTURE ... 130
/ NEW LINE... 129
/ OPERATOR ... 75
SUFFIX ... 92
:V SUFFIX ... 92
; SEMI-COLON 19
| VERTICAL BAR 19
+ OPERATOR .. 75
= 96
A FORMAT 124, 131
A PICTURE ... 125
ABS FUNCTION 327
ABUTTON... 280
ACCEPT RECORD IF............................ 269
ACOS FUNCTION 327
ACROSS RECORD FUNCTIONS............ 305
ADDITION FUNCTION......................... 375
AFTER 101, 157, 187
AINT FUNCTION 327
ALL 84, 146, 234
ALL, GET VARS 81
ALOG FUNCTION................................ 327
ALOG10 FUNCTION 327
AMOD FUNCTION............................... 327
AND ... 97
APPDIR FUNCTION 327
APPEND.. 117
APPEND ITEM..................................... 236
APPEND LINE 236
APPLICATION DIRECTORY................. 327
ARC COSINE FUNCTION 327
ARC SINE FUNCTION.......................... 328
ARCOS FUNCTION.............................. 328
ARCTANGENT FUNCTION 329
ARGUMENT LIST FUNCTIONS 304
ARRAY ... 23, 53

ARRAYS ... 93
ARRDIMN FUNCTION 328
ARRDIMST FUNCTION........................ 328
ARRDIMSZ FUNCTION........................ 328
ARSIN FUNCTION 328
ASIN FUNCTION 328
AT .. 275
ATAN FUNCTION................................ 329
ATTRIBUTE NAME 329
ATTRNAME FUNCTION 329
AUTO 263, 267, 275
AUTOKILL LIMIT........................ 344, 371
AUTOSET ... 78
AVERAGE VALUE FUNCTION............. 351
B FORMAT.................................. 124, 131
BACKUP ... 160
BEEP .. 238
BEGIN .. 102
BINARY .. 117
BINARY FORMATS 125
BIND STATEMENT.............................. 194
BINDPARM FUNCTION 329
BLANK ... 62, 87
BLANK REPLACEMENT 342
BORDERS ... 217
BRANCH FUNCTION 329
BRANCHD FUNCTION......................... 329
BRANCHN FUNCTION......................... 329
BROWSE DIRECTORY......................... 238
BROWSE FILE..................................... 238
BUFFER NAME 329
BUFNAME FUNCTION......................... 329
BUTTON 219, 234
C PICTURE.. 125
IF 276
CALL SCREEN 275
CAPITAL FUNCTION 329
CAPITALISATION FUNCTION 329
CASE IS .. 140
CASE PROCESSING............................. 146
CASELOCK ... 170
CASELOCK FUNCTION 330
CAT VAR FUNCTION 330
CAT VARS .. 57

SIR/XS Visual PQL 403

CATEGORICAL VARIABLES 57
CATINT FUNCTION............................. 330
CATSTR FUNCTION 330
CDATE FUNCTION.............................. 330
CENTER FUNCTION 330
CGI WRITE ... 127
CGIBUFPN FUNCTION 331
CGIBUFSV FUNCTION 331
CGIVARPN FUNCTION........................ 331
CGIVARSV FUNCTION........................ 331
CHANGE CIR LOCK TYPE 330, 331
CHAR FUNCTION................................ 331
CHECK 220, 234
CHECK ITEM 236
CHECK MENUITEM 213
CHOICE 221, 234
CIRLOCK .. 38
CIRLOCK FUNCTION 331
CLEAR................................ 263, 267, 280
CLEAR ALL .. 236
CLEAR BUFFER 291
CLEAR DCONTROL............................. 244
CLEAR OUTPUT WINDOW 203
CLEAR SELECT ITEM.......................... 236
CLIENT AUTOKILL 344, 371
CLIPAPP FUNCTION 331
CLIPGET FUNCTION 332
CLIPLINE FUNCTION 332
CLIPSET FUNCTION............................ 332
CLOSE .. 120
CLOSE TABLE 177
CLOSETABLE 185
FILES.. 120
CNT FUNCTION 332
CNTR FUNCTION 332
COLCOUNT FUNCTION....................... 332
COLLABEL FUNCTION 332
COLLEN FUNCTION............................ 333
COLNAME FUNCTION 333
COLTYPE FUNCTION 333
COLVALN FUNCTION 333
COLVALS FUNCTION 333
COMBO .. 223
COMMA FUNCTION 333
FIELD ... 272
COMPARE FLOATING POINT 341

COMPILATION ERRORS...................... 393
COMPUTE... 79
CONCATENATING STRINGS 75
CONCURRENT VISUALPQL................. 170
CONNECT DATABASE, PQL 135
CONNECT ODBC................................. 192
CONNECT TABFILE 178
CONSTANTS ... 74
CONTINUATION LINES 19
CONTROL FLOW................................... 94
CONTROL VARS 58
COS FUNCTION 334
COSINE FUNCTION............................. 334
COUNT 139, 146, 185, 334
CREATE BUFFER 292
CRWARN .. 38, 56
CRYPTKEY ... 334
CTIME FUNCTION 334
CURDIR FUNCTION 334
CURRENT DIRECTORY 334
D FORMAT 124, 130
D PICTURE ... 125
DATA ... 259
DATA FORMAT FUNCTION................. 390
DATA TYPE FUNCTION 390
DATABASE ACCESS 28
DATABASE ACCESS OVERVIEW......... 132
DATABASE FUNCTIONS 316
DATABASE IS 137
DATABASE NAME FUNCTION 336, 337
DATABASE TYPE FUNCTION 337
DATABASE VARIABLES 77
DATABASE, PQL CONNECT 135
DATABASE, PQL DISCONNECT 136
DATE.............................. 22, 59, 124, 131
DATE FUNCTIONS 306, 330, 334, 335
DATE VARIABLES 59
DATEC FUNCTION.............................. 334
DATEMAP FUNCTION......................... 335
DATET FUNCTION 335
DBINDN FUNCTION 336
DBINDR FUNCTION 336
DBINDS FUNCTION 336
DBINDT FUNCTION 336
DBINDU FUNCTION 336
DBINDV FUNCTION 336

SIR/XS Visual PQL 404

DBNAME FUNCTION 337
DBTYPE FUNCTION 337
DEBUG ... 38
DEBUGGER .. 393
VISUALPQL .. 393
ARRAY ... 53
DECRYPT FUNCTION.......................... 337
DEDIT... 240
DEDIT MESSAGE 244
DEFAULT FAMILY NAME 337
DEFAULT MEMBER NAME 337
DEFAULT TABFILE NAME 337
DEFFAM FUNCTION 337
DEFINE PROCEDURE VARIABLES 93
DEFMEM FUNCTION........................... 337
DEFTFN FUNCTION 337
DELDIR FUNCTION............................. 337
DELETE 118, 120, 267, 280
DELETE BUFFER 293
DELETE CASE..................................... 141
DELETE CLIENT 338
DELETE DIRECTORY 337
DELETE FILE 338
DELETE LINE IN BUFFER.................... 294
DELETE PROCEDURE FILE MEMBER .. 121
DELETE RECORD................................ 152
DELETE ROW 180
DELFILE FUNCTION 338
DELMCLID FUNCTION........................ 338
DGLOBAL FUNCTION 338
DIALOG.. 215
DIALOG DESIGN................................. 239
DIFFERENCE FILE COPY FUNCTION ... 371
DIMENSION.. 53
ARRAY ... 53
DIMENSIONS .. 23
DISABLE ITEM 236
DISABLE MENUITEM.......................... 212
DISABLE TIMER 235
DISCONNECT DATABASE, PQL........... 136
DISCONNECT ODBC 192
DISPLAY ERROR BOX......................... 238
DISPLAY INFO BOX 238
DISPLAY OK/CANCEL BOX................. 238
DISPLAY OPEN BOX 238
DISPLAY POPUP LIST 214

DISPLAY SAVE BOX 239
DISPLAY TEXT BOX 238
DISPLAY WDL 300
DISPLAY YES/NO BOX........................ 238
DISPLAY YES/NO/CANCEL BOX 238
DITEM FUNCTION 338
DITEMCOL FUNCTION........................ 338
DITEMH FUNCTION 338
DITEMID FUNCTION 338
DITEMROW FUNCTION....................... 338
DITEMS FUNCTION 338
DITEMSEL FUNCTION 338
DITEMSID FUNCTION 339
DITEMTXT FUNCTION........................ 339
DITEMTYP FUNCTION 339
DITEMW FUNCTION 339
DRAG AND DROP 211
DROPFILE... 211
DSN .. 118
DSN FUNCTION 339
DTTOTS FUNCTION 336
DYNAMIC............................... 41, 45, 118
E FORMAT 124, 130
EDIT ... 222, 234
EDIT BUFFER 295
EDIT FUNCTION 339
EDITIN ... 273
EDITOR NAME FUNCTION 339
EDITOUT .. 273
ARRAY ... 23
ELSE... 87, 106
ELSEIF.. 106
ELSEIFNOT... 106
ENABLE ITEM 236
ENABLE MENUITEM........................... 212
ENABLE TIMER 235
ENCRYPT FUNCTION.......................... 339
ENCRYPTION KEY FUNCTION 334
END BEGIN ... 102
END CASE .. 142
END DATABASE IS 137
END DIALOG 215
END FOR .. 104
END IF .. 106
END INITIAL............................... 210, 234
END JOURNAL RECORD 153

SIR/XS Visual PQL 405

END LOOP .. 107
END MENU ... 205
END MESSAGE 211, 234
END PROCESS CASE 142
END PROCESS JOURNAL 153
END PROCESS RECORD 153
END PROCESS ROW............................ 181
END PROGRAM 43
END RECORD 153
END RETRIEVAL 43
END ROW ... 181
END SCREEN 270
END SUBPROCEDURE......................... 113
END SUBROUTINE................................ 43
END UNTIL... 109
END WHILE .. 111
END WINDOW 198
ENDMSG .. 38
ENVIRONMENT VARIABLE FUNCTION344
EQ .. 96
ERROR 118, 123, 127
ERROR BOX.. 238
ERROR FUNCTION.............................. 340
ERROR MESSAGE 354
ERROR MESSAGES 118, 287
ERRORS IN PROGRAMMING 393
EVALUATE... 80
EXPRESSIONS 76
EXCLUDE 93, 284
EXECUTE ... 38
EXECUTE DBMS 44
EXECUTE STATEMENT....................... 194
EXECUTE SUBPROCEDURE 114
EXECUTE SUBROUTINE 45
EXISTS FUNCTION.............................. 340
EXIT ... 103, 280
EXIT BEGIN .. 102
EXIT CASE.. 143
EXIT FOR.. 104
EXIT IF ... 106
EXIT JOURNAL IS 167
EXIT LOOP ... 107
EXIT MESSAGE................................... 211
EXIT PROCESS JOURNAL.................... 168
EXIT RECORD..................................... 154
EXIT ROW .. 182

EXIT SUBPROCEDURE 113
EXIT SUBROUTINE 49
EXIT UNTIL .. 109
EXIT WHILE 111
EXP FUNCTION................................... 340
EXPLICIT DECLARATIONS 51
EXPONENT FUNCTION 340
EXPRESSIONS 74
EXTERN FUNCTION............................ 340
EXTERNAL VARIABLE BLOCK 91
EXTERNALS ... 93
EXTERNS FUNCTION 340
F FORMAT 124, 130
FAILFLD ... 251
FAILMESS .. 252
FAILSCR ... 252
FAMILY NAME FUNCTION 341
FBUTTON ... 282
IF 282
FDISPLAY... 278
FEQ FUNCTION................................... 341
IF 274
FIELDIN.. 252
FIELDOUT .. 252
FILE BROWSE............................. 238, 341
FILE DETAILS..................................... 342
FILE EXISTS 341
FILE I/O OVERVIEW............................ 115
FILE NAME... 341
FILE OUTPUT...................................... 341
FILECNT FUNCTION 341
FILEID 117, 123, 127
FILEIN FUNCTION 341
FILEIS FUNCTION 341
FILEN FUNCTION 341
FILENAME FUNCTION 339
FILEOUT FUNCTION 341
FILES IN DIRECTORY 341
FILESTAT FUNCTION 342
FILETIME FUNCTION.......................... 342
FILL FUNCTION 342
FIND ITEM FUNCTION 343
FIRST ... 280
FLOATING POINT 64
FLOATING POINT COMPARE 341
FOCUS.. 235

SIR/XS Visual PQL 406

FOCUS ITEM 236
FOR .. 104
FORM ... 263
FORMAT FUNCTION............................. 343
FILES.. 124
FRACTION .. 147
FROM ... 158, 187
FST FUNCTION 343
FSTR FUNCTION 343
FUNCTIONS.. 75
VISUALPQL .. 75
GE .. 96
GENERATE ... 284
GET .. 38
GET INI FILE TEXT 385
GET LINE FROM BUFFER 296
GET VARS 56, 81
GETAKL FUNCTION............................ 344
GETBTNH FUNCTION 343
GETCHCH FUNCTION 343
GETCHKH FUNCTION 344
GETDFC FUNCTION 344
GETENV FUNCTION............................ 344
GETERR FUNCTION 344
GETFLT FUNCTION 344
GETFOCUS FUNCTION........................ 344
GETICHK FUNCTION 345
GETIFLT FUNCTION 345
GETIINT FUNCTION............................ 345
GETINT FUNCTION............................. 345
GETITXT FUNCTION 345
GETLBLH FUNCTION.......................... 345
GETLTXT FUNCTION 345
GETMAXCH FUNCTION 345
GETMCADD FUNCTION 345
GETMCHK FUNCTION 346
GETMCLID FUNCTION........................ 346
GETMCLST FUNCTION 346
GETMCON FUNCTION 346
GETMDBN FUNCTION 346
GETMSEL FUNCTION 346
GETNITEM FUNCTION........................ 346
GETNLINE FUNCTION 346
GETNSEL FUNCTION 347
GETPOS FUNCTION 347
GETRADH FUNCTION 347

GETRSTEP FUNCTION 347
GETTXT FUNCTION 347
GETTXTH FUNCTION 347
GLOBAL NAME FUNCTION................. 348
GLOBAL VARIABLE FUNCTIONS........ 307
GLOBALN FUNCTION 347
GLOBALS FUNCTION 348
GRID .. 245
GT .. 96
HELP .. 235, 276
HELP FUNCTION 348
HEX FORMAT 125
HI 87
HIDE ITEM.. 236
HIGHEST .. 87
HYPERBOLIC TANGENT FUNCTION ... 382
I FORMAT................................... 124, 130
FORMATS................................... 124, 130
I/O SPECIFICATIONS................... 124, 130
IB FORMAT .. 125
ICHAR FUNCTION 348
IDSTATUS FUNCTION......................... 348
IF 99
IFNOT... 99
IFNOTTHEN .. 106
IFTHEN... 106
IMAGE.. 225
IMPLICIT VARIABLES..................... 22, 56
INCLUDE 93, 284
INCLUDE EXTERNAL VARIABLE.......... 92
INCREMENT 146
INDEX VARIABLE FUNCTION............. 336
INDEXED BY 157, 185, 189
INFORMATION BOX 238
INITIAL 210, 234, 267
INPUT FORMATS 124
INPUT FUNCTION 356, 374
SUBROUTINE 38
INSERT DCONTROL 242
INSERT ITEM 236
INSERT LINE INTO BUFFER 297
INSERT TEXT...................................... 236
INTEGER .. 22, 61
INTEGER FUNCTION........................... 327
INTEGER RANGES 22
INTEGER VARIABLES........................... 61

SIR/XS Visual PQL 407

GRAPHIC INTERFACE PQL.................... 32
FILES.. 27
ODBC PQL .. 31
PQL FUNCTIONS................................... 34
PQL ODBC .. 31
PROGRAM FLOW 25
TABFILE ACCESS 30
IOSTAT....................... 118, 123, 178, 179
IOSTAT = .. 128
JOUFLAG FUNCTION 349
JOURNAL FILE 163
JOURNAL RECORD IS 166
JOURNAL TYPE 164
JOURNAL USER 165
JOURNALS IN VISUALPQL.................. 161
JULC FUNCTION 349
DATE FUNCTIONS 349
JULN FUNCTION................................. 349
JUMP .. 100
KEEPCIR... 141
KEYBOARD INPUT 123
KEYNAME FUNCTION 349
KEYORDER FUNCTION....................... 349
L PICTURE.. 125
LABEL .. 226
LABELS .. 70, 100
LAST .. 280
LAST VALUE FUNCTION 350, 351
LE .. 96
LEN FUNCTION 350
LG10 FUNCTION 350
LIBRARY .. 39
LINE ... 227
LINES FUNCTION 350
LIST 147, 228, 234
LISTS OF VARIABLES 52
LN FUNCTION 350
LO .. 87
LOADING ... 39
LOADMAP .. 39
LOCAL VARIABLES 22, 50, 77
LOCK 39, 140, 147, 151, 157
LOCK =... 170
LOCK TYPES .. 38
LOG BASE 10 FUNCTION 327
LOG FUNCTION 350

LOG10 FUNCTION............................... 350
LOGARITHM FUNCTION 327
VALUES ... 98
LOGICAL OPERATIONS 96
LOGICAL VALUES 98
LOOKUP ... 172
LOOP .. 107
LOWER FUNCTION 350
LOWEST ... 87
LRECL .. 118
LST FUNCTION 350
LSTR FUNCTION................................. 351
LT .. 96
MAIN ROUTINE 36
MAKEDIR FUNCTION 351
MASTER ... 170
MASTER DIFFERENCE FILE COPY FUNC

... 344
FUNCTIONS.. 303
MATHEMATICAL FUNCTIONS 303
MAX FUNCTION 351
MAXR FUNCTION 351
MAXRECS FUNCTION......................... 351
MEAN FUNCTION 351
MEANR FUNCTION............................. 351
MEMBER 119, 123, 128
MEMBER COUNT FUNCTION 352
MEMBER INFORMATION FUNCTION .. 352
MEMBER NAME FUNCTION................ 352
MENU... 205
MENUITEM... 206
MENUSEP ... 207
MESSAGE 211, 234
MIN FUNCTION.................................. 353
MINR FUNCTION 353
MISNUM FUNCTION 353
MISS FUNCTION 353
MISSCHAR ... 39
MISSING... 82, 87
MISSING FUNCTION............................ 353
MISSING VALUE FUNCTION 353
MISSING VALUES 23, 62, 73
MKEYSIZE FUNCTION 353
MOD FUNCTION 354
MODE... 178
MODIFY DCONTROL 243
MODIFY DCONTROL FONT................. 243

SIR/XS Visual PQL 408

MOVE VARS ... 81
MRECSIZE FUNCTION 354
MSGTXT FUNCTION 354
NAMES ... 20
VISUALPQL .. 20
NARG FUNCTION 354
NATURAL LOGARITHM FUNCTION 327
NBRANCH FUNCTION......................... 354
NE .. 96
NEW CASE IS...................................... 140
NEW LINE... 129
NEW RECORD IS................................. 151
NEW ROW IS....................................... 189
NEXT.. 108, 280
NEXT CASE .. 144
NEXT FOR .. 104
NEXT LOOP .. 107
NEXT MESSAGE 211
NEXT PROCESS HEADER 169
NEXT PROCESS JOURNAL 169
NEXT RECORD 155
NEXT ROW ... 183
NEXT UNTIL 109
NEXT WHILE 111
NEXTROW FUNCTION 354
NGET FUNCTION 355
NGLOBAL FUNCTION 355
NKEYS FUNCTION.............................. 355
NLABELS FUNCTION 355
NLEVELS.. 49
NMAX FUNCTION............................... 355
NMIN FUNCTION 355
NMISSING .. 82
NOARRAYMSG 39
NOARRAYS .. 93
NOAUTO 263, 267
NOAUTOCASE 39, 112
NOCLEAR................................... 263, 267
NOCRWARN ... 38
NODATA .. 259
NODATABASE 40, 263
NOECHO... 274
NOENDMSG.. 38
NOEOL ... 128
NOEXECUTE... 38
NOEXTERNALS 93

NOFCASES FUNCTION 356
NOPROCS ... 40
NOSAVE ... 91
NOSIMPLE .. 93
NOT.. 96
NOTUPDLOG .. 42
NOUPDATE... 268
NOUPDLOG .. 42
NOVARMAP ... 42
NOW FUNCTION 356
NPUT FUNCTION 356
NREAD FUNCTION 356
NRECS FUNCTION 356
NSUBDIR FUNCTION 356
NUMBER OF INDEXES FUNCTION 336
NUMBER TO STRING FUNCTION 343
NUMBERS .. 74
NUMBR FUNCTION............................. 357
NUMCASES FUNCTION....................... 357
NUMERIC CONSTANTS......................... 74
NUMRECS FUNCTION......................... 357
NVALID FUNCTION 357
NVALLAB FUNCTION 357
NVARDOC FUNCTION 357
NVARS FUNCTION.............................. 358
NVARSC FUNCTION 358
NVVAL FUNCTION 358
OBSERVATION VARS 63
ODBC STATEMENT............................. 194
ODBCCOLS FUNCTION 358
ODBCTABS FUNCTION 358
OK/CANCEL BOX................................ 238
OLD CASE IS....................................... 140
OLD RECORD IS.................................. 151
OLD ROW IS 189
ONCALL ... 276
ONETIME.................................... 157, 186
OPEN .. 117
OPEN FILE BOX 238
OPEN MESSAGES................................ 118
OPEN TABLE 176
FILES.. 117
OPERATORS ... 75
OPERATORS IN EXPRESSIONS 74
OR .. 97
OUTPUT CLEAR WINDOW 203

SIR/XS Visual PQL 409

OUTPUT FILE NAME FUNCTION 358
OUTPUT SAVE 204
OUTPUT SPECIFICATION 129
OUTPUT WINDOW 201
PQLFORMS COMMANDS 249
PACK FUNCTION 358
PAD FUNCTION 359
PAGEDOWN 281
PAGELEN FUNCTION.......................... 359
PAGENO ... 268
PAGENO FUNCTION 359
PAGES .. 268
PAGESIZE........................... 263, 267, 271
PAGEUP.. 281
PAGEWID FUNCTION 359
PARENTHESES 74, 97
PATTERN FUNCTION 359
PERFORM PROCS.................................. 46
PERIOD .. 19
PFORMAT FUNCTION 359
PICTURE CLAUSE....................... 125, 129
PICTURE FUNCTION 360
POPUP HELP 238
POSTYPE .. 218
PQL CONNECT DATABASE 135
PQL CONNECT TABFILE 178
PQL DISCONNECT DATABASE............ 136
PQL DISCONNECT TABFILE................ 179
PQL ESCAPE ... 47
PQL EXIT DBMS.................................... 48
PQLFILE ... 263
AT .. 258
CLEAR.. 255
COLUMNS .. 258
CO-ORDINATES 258
DATA ... 257
DELETE .. 256
EDITING FIELDS 254
ERROR 252, 262
ERROR MESSAGE 262
EXIT ... 254
FIELD ELEMENTS............................... 257
FIRST ... 255
FONT.. 261
GENERAL CLAUSES 257
HELP .. 252

LABEL .. 257
LABELS .. 260
LAST .. 255
MESSAGE ... 262
MESSAGES ... 252
NEXT.. 255
NOLABELS ... 260
NOPROMPT .. 260
PAGING .. 254
PQLFORMS ... 247
PREVIOUS .. 255
PROMPT 257, 260
RESET .. 255
ROWS ... 258
SCREEN CO-ORDINATES 258
UPDATING RECORDS 255
VALUE LABELS.................................. 260
WIDTH ... 259
WRITE .. 255
PQLSERVER FUNCTIONS 369
PRECEDENCE IN EXPRESSIONS............ 76
PREFIX, GET VARS 81
PREPARE STATEMENT 194
PRESET .. 23, 82
ARRAY ... 82
PREVIOUS .. 280
PREVIOUS CASE 145
PREVIOUS RECORD 156
PREVIOUS ROW.................................. 184
PRINT FILENAME 239
PROCEDURE VARIABLES 93
PROCESS CASES 146
PROCESS JOURNAL 163
PROCESS RECORD 157
PROCESS ROWS.................................. 185
PROCFILE FUNCTION 361
PROCNAME FUNCTION 361
PROCS .. 40
PROGRAM .. 37
PROGRAM STATUS FUNCTION 376
PROGRAM VARIABLES 50
PROGRAMMING ERRORS 393
PROGRESS.................................... 40, 231
PROGRESS FUNCTION 361
PROMPT 276, 283
PROMPT TEXT 123

SIR/XS Visual PQL 410

PUBLIC... 40, 91
PUT LINE TO BUFFER 298
PUT VARS .. 84
QUOTATION MARKS 74
QUOTED STRINGS 74
RACCESS FUNCTION 361
RADIO .. 229, 234
RAND FUNCTION 362
RANDOM NUMBER FUNCTION 362
RANF FUNCTION 362
RANGES ... 71
RANGES INTEGER 22
RB FORMAT 125
READ 119, 122, 268
FILES.. 122
READONLY .. 274
REAL.. 22, 64
REAL4 FUNCTION 362
RECDOC FUNCTION 362
RECDOCN FUNCTION 362
RECLEVEL ... 149
RECLEVEL FUNCTION........................ 362
RECLOCK 40, 170
RECLOCK FUNCTION 363
RECNAME FUNCTION......................... 363
RECNUM FUNCTION........................... 363
RECODE ... 86
RECORD BLOCKS 29
RECORD COUNTER FUNCTION 334
RECORD DOCUMENTATION 362
RECORD INDEXED FUNCTION 336
RECORD IS ... 151
RECORD LABEL 362
RECORD NAME 151, 157
RECORD NUMBER 151, 157
RECSIZE FUNCTION 363
ARRAY ... 54
REDEFINE ARRAY 54
REGEXP FUNCTION 363
REGREP FUNCTION 366
REGULAR EXPRESSIONS 363, 366
REJECT RECORD IF............................. 269
OPERATORS ... 96
RELATIONAL OPERATORS 96
REMAINDER FUNCTION 327
REMOVE ALL 236

REMOVE DCONTROL 243
REMOVE ITEM 236
RENAME FILE FUNCTION 367
REPEAT SYMBOL 82
MEMBERS .. 119
REPLACE........................ 40, 91, 119, 128
REPLACE FUNCTION 366
REPLACING BLANKS.......................... 342
REQUIRED FIELDS.............................. 269
REREAD ... 126
RESET .. 280
RESTORE CIR 148
RESTORE REC 159
RETRIEVAL .. 37
RETRY RECORD 159
RETURN ... 49
RETURN CODE FUNCTION.................. 372
RETURNING 40, 45
SUBROUTINE 40
REVERSE.................... 147, 157, 164, 186
REVERSE FUNCTION 367
RKEYSIZE FUNCTION......................... 367
RND FUNCTION 367
RNMFILE FUNCTION 367
ROUNDING FUNCTION 367
ROW IS ... 189
ROW PROCESSING.............................. 185
ROWCOUNT FUNCTION...................... 367
RRECSEC FUNCTION 367
RT_ERROR ... 112
RUN TIME ERROR............................... 112
RVARSEC FUNCTION 368
S PICTURE .. 125
SAMPLE 147, 186
SARG FUNCTION 368
SAVE .. 40
SAVE FILE BOX 239
SBST FUNCTION 368
SCALED VARS 65
SCHEMA FUNCTIONS 316
SCREEN.. 265
SCREENS .. 285
SCROLLAT FUNCTION........................ 368
SCROLLTO FUNCTION........................ 368
SECURITY .. 178
SEED 41, 147, 186

SIR/XS Visual PQL 411

SEEK FUNCTION 368
SELECT .. 268
SELECT ALL 236
SELECT DCONTROL 243
SELECT ITEM 236
SERADMIN FUNCTION 369
SERADMIS FUNCTION 369
SEREXEC FUNCTION 369
SERGET FUNCTION 370
SERLINES FUNCTION 370
SERLOG FUNCTION 370
SERNOOUT FUNCTION 370
SERSEND FUNCTION 370
SERSENDB FUNCTION 370
SERTEST FUNCTION 371
SERVER.. 192
SERWRITE FUNCTION 371
SESSION FUNCTIONS 313
SET... 23, 89
SET DIALOG TITLE 236
SET IMAGE... 236
SET INI FILE TEXT 386
SET ITEM.. 236
SET ITEM FONT 236
SETAKL FUNCTION 371
SETDFC FUNCTION 371
SETDIR FUNCTION 371
SETPOS FUNCTION............................. 371
SETRANGE FUNCTION 371
SETRC FUNCTION 372
SETTING VARIABLES 72
SGET FUNCTION 372
SGLOBAL FUNCTION 372
SHOW ITEM.. 236
SHOWMISS ... 41
SIGN FUNCTION 372
SIMPLE... 93
SIMPLE VARIABLES 51
SIN FUNCTION 372
SINE FUNCTION 372
SIRCGI.HTM 127
SIRUSER FUNCTION 372
SKIPPING .. 146
SLIDER ... 230
SMAX FUNCTION 373
SMIN FUNCTION 373

SMISSING ... 82
SORT .. 54
ARRAY ... 54
SPIN ... 224
SPREAD FUNCTION 373
SPUT FUNCTION................................. 373
SQRT FUNCTION 373
SQUARE ROOT FUNCTION.................. 373
SRCH FUNCTION 373
SREAD FUNCTION 374
SRST FUNCTION 374
STANDARD DEVIATION FUNCTION... 374,

375
START CASE....................................... 146
STATEMENT....................................... 194
STATEMENT LABELS 100
STATIC ... 41, 45
STATTYPE FUNCTION 374
STATUS LINE...................................... 200
STDEV FUNCTION 374
STDEVR FUNCTION 375
STDNAME FUNCTION......................... 375
STDOUT WRITE 127
STOP .. 103
STRING .. 22, 66
STRING EDIT FUNCTION 339
STRING FUNCTIONS 308
STRING LENGTH 56
STRING LENGTH FUNCTION............... 350
STRING SEARCH FUNCTION............... 373
STRING TO NUMBER FUNCTION 357
STRINGS... 74
SUBDIR FUNCTION............................. 375
SUBPROCEDURE 112
SUBROUTINE 37, 264
ARRAY ... 23
SUBSCRIPT, ARRAYS............................ 23
ARRAY ... 53
SUBSCRIPTS 23, 53
SUBSTR FUNCTION 375
SUBSTRING FUNCTION 368
SUBSTRING SEARCH FUNCTION 374
SUFFIX, GET VARS 81
SUM FUNCTION.................................. 375
SUMFILE .. 41
SUMMARY VARIABLES........................ 50

SIR/XS Visual PQL 412

SUMR FUNCTION 375
SVVAL FUNCTION.............................. 376
SWAP ITEM .. 236
SYSTEM FUNCTION............................ 376
SYSTEM MISSING VALUES 73
SYSTEM() 139, 149
T POSITIONAL FORMAT 124, 131
TABFILE ... 41
TABFILE CONNECT 178
TABINDN FUNCTION 379
TABINDS FUNCTION 379
TABINDT FUNCTION 379
TABINDU FUNCTION 380
TABINDV FUNCTION 380
TABLE FUNCTIONS 379
TABNAME FUNCTION 380
TABRECS FUNCTION 380
TABVARS FUNCTION 380
TABVINFN FUNCTION 380
TABVINFS FUNCTION......................... 381
TABVNAME FUNCTION 381
TABVRANG FUNCTION 381
TABVTYPE FUNCTION 381
TABVVALI FUNCTION........................ 381
TABVVLAB FUNCTION....................... 382
TABVVVAL FUNCTION 382
TAN FUNCTION 382
TANGENT FUNCTION 382
TANH FUNCTION................................ 382
TBARITEM ... 208
TBARSEP .. 209
TEXT .. 232, 234
TEXT BOX .. 238
TFACCESS FUNCTION 382
TFATTR FUNCTION 382
TFCOUNT FUNCTION 382
TFFILE FUNCTION 383
TFGRNAME FUNCTION 383
TFGRPW FUNCTION 383
TFJNNAME FUNCTION 383
TFNAME FUNCTION 383
TFTABS FUNCTION 383
TFUSNAME FUNCTION 383
TFUSPW FUNCTION............................ 383
THRU 86, 158, 187
TIME 22, 67, 124, 131

TIME FORMAT...................................... 22
TIME FUNCTION................................. 383
TIME FUNCTIONS....................... 306, 334
TIME VARIABLES 67
TIMEC FUNCTION 384
TIMEMAP FUNCTION 384
TIMER .. 235
TIMESTAMP FUNCTION.............. 336, 385
TIP BOX.. 238
TITLE ... 268
TO LISTS .. 52
TODAY FUNCTION 384
TREE .. 233
FUNCTIONS.. 302
TRIGONOMETRIC FUNCTIONS 301
TRIM FUNCTION 384
TRIML FUNCTION 384
TRIMLR FUNCTION 384
TRIMR FUNCTION 385
TRUNC FUNCTION.............................. 385
TRUNCATION FUNCTION 327, 385
TSTODT FUNCTION 385
TSTOTM FUNCTION 385
TUPDATE 41, 186, 189
TWRITE FUNCTION 385
TYPE .. 274
TYPE OF DATABASE FUNCTION 337
U PICTURE ... 125
UNCHECK ITEM 236
UNCHECK MENUITEM........................ 213
UNDEFINED 73, 87
UNIQUE INDEX FUNCTION 336
UNTIL................................. 109, 158, 187
UPDATE 41, 264, 268
UPDATE LEVEL 164
UPDATE LEVEL FUNCTION 385
UPDATE LOG.. 42
UPDLEVEL FUNCTION........................ 385
UPGET FUNCTION 385
UPPER FUNCTION 385
UPSET FUNCTION............................... 386
UPSTAT .. 42
VALID RANGES 71
VALID VALUES 68
VALIDATE FUNCTION 386
VALLAB ... 69

SIR/XS Visual PQL 413

VALLAB FUNCTION 386
VALLABSC FUNCTION 386
VALLABSN FUNCTION 387
VALLABSP FUNCTION........................ 387
VALLABSV FUNCTION 387
VALUE EXPRESSIONS 74
VALUE LABEL FUNCTION 386
VALUE LABELS.................................... 69
VAR LABEL .. 70
VAR RANGES 71
VARDOCSN FUNCTION 388
VARGET FUNCTION 388
VARIABLE CONVERSION 86
VARIABLE LABEL FUNCTION 388
VARIABLE LISTS 52
VARIABLE REFERENCES 77
VARIABLE TYPE FUNCTION............... 390
VARIABLES.................................... 22, 50
VARIABLES IN INDEX FUNCTION....... 336
VARLAB ... 70
VARLAB FUNCTION 388
VARLABSC FUNCTION........................ 388
VARLENG FUNCTION 389
VARMAP 42, 50, 91
VARNAME FUNCTION 389
VARNAMEC FUNCTION...................... 389
VARPOSIT FUNCTION......................... 389
VARPUT FUNCTION 389
VARS.. 285
VARTYPE FUNCTION 390

VFORMAT FUNCTION......................... 390
VIA... 158, 187
VTYPE FUNCTION 390
WACCESS FUNCTION 391
WAIT.. 110
ARRAY ... 39
WHILE .. 111
WIDTH ... 277
WINCNT FUNCTION............................ 391
WINDOW .. 198
WINDOW CLEAR 203
WINDOW OUTPUT 201
WINDOW SAVE 204
WINDOW STATUS 200
WINDOW TITLE.................................. 199
WINLIN FUNCTION............................. 391
WINMOVE FUNCTION 391
WINPOS FUNCTION 391
WINSELL FUNCTION 392
WINSELP FUNCTION 392
WITH.. 158, 187
WRECSEC FUNCTION 392
WRITE 119, 127, 269, 280
WVARSEC FUNCTION......................... 392
X POSITIONAL FORMAT 124, 131
XOR ... 97
YES/NO BOX....................................... 238
YES/NO/CANCEL BOX 238
YESNO FUNCTION.............................. 392

