SIR/XS Visual PQL 1

011070 (8 (o1 1T o] o R 16
MAIN ROULINES.......eeiiiceie ettt et r e s st e s s e s s s b e e e s s bt e s s s ebbe s s ssabeeessbaees 16

T o (001 1= 16
EXternal Variabl€ BIOCKS........coouiiiiieie ettt sttt 16
Compiling AN EXECULINGecveeieieeeiesieeee ettt bt re e e e 17
ViSUAIPQL PrOCEAUIES........cueeieieeiieie sttt nne s 17
ViISUAIPQL SYNEAX ...eueiiiiiieiesiesieeie sttt sttt sttt sseeeesteeae e 19
N2 1< 20
(0] (= OSSR 21

RV o 1= 22
(00011 0 I = o YOO 25
2] (00 L (0 [ox 11 (=T 25
=10) O 26

[T ES N L 27
FOrmat SPECITICALIONSocueieieieiieiee ettt 27

(B = 0= s Sl AN o 0o 28
MUItiple Dataase ACCESS.cceierierierieeiesie ettt sre et ne e nees 28
L0521 Sl =] (010 (T 28
(RS w0 (0l =1 o ox T 28
IE= o L)Y = 30
(@]] 1 TR 31
Graphical USer INEEITACE.......ccuieeieie et 32
[O 0] 0 1T 32

[11 10 R 34
SOUICE COMMEAINTASceceviiec ittt ettt s st e e st e e s e e s sb e e e s sabaesssbbesssbbesssbbresens 35
Visual PQL Programs and ROULINESccveiieiiiiieesiieiie e s 36
RETRIEVAL, PROGRAM, SUBROUTINEccoiiiictie et 37
= 10 43
EXECUTE DBMS ...ttt sttt be s s bae s s sabae s s saba e s s sabae e e s anres 44
EXECUTE SUBROUTINE ...ttt vae s s snres 45
PERFORM PROCS ...ttt sttt b e s s ba s s sbae s s sbb e s s s bbe e s sanres 46
POL ESCAPKE ...ttt e s e e e et e e s ate e et e e eb e e ebeeesbeeesaeeesaneas 47
POQL EXIT DBMS.......oooee ettt ettt et e st e b e e be e e snee e enneennneas 48
L L 1 TR 49
RV = o] 1O 50
Explicit Variable DeClarations...........coceiieiieiieiie et 51
A o LT I 52
AATTAYS. ettt ettt e e st e s R e e b et e e ae e e e R e e e R e e e Re e e enn e e ne e e nnreennneenneenneeea 53
L I A T {7 2 54
T | TR 54
IMPLICIE VATADIES......ceiieeee et 56
(07 AN B N = TR 57
CONTROL VARS.ttt ettt ettt e s e st e e aa e e be e e ebeessaeeesateesasessareesnnreennns 58
DN I 59
L@ 10 |11) o 1 59

SIR/XS Visual PQL 2

MISSING VALUES ...ttt st nnas 62
OBSERVATION VARS......cciieeiese ettt st s bt ee e 63
L PR 64
SCALED VARS ...ttt sttt sttt sb et e b e et e 65
STRING ...ttt et et e b et e s b e e st et e s be e st e besbeententeenee e e 66
TIME ettt e bt e et e b e ne et e re et e e 67
(@72 TU 1o o 1S ST 67
VALID VALUES ...ttt sttt sttt st be e nne s 68
VALUE LABELS ...ttt ettt st 69
VAR LABEL ...ttt st 70
VAR RANGES. ..ottt sttt be e 71
ASSIGNING VAIUBS ...ttt ae e ae e nbe e s e sreesnaesneenneens 72
MISSING VAIUES......ccoeiiie ettt ettt ettt e e et enbe e se e e naeenaeennas 73
0155] PSP 74
Databhase Variall€s...........ooeoiiieeee e s 77
O S TS 78
COMPUTE ..ottt sttt st sttt et et et et e st et e e e e eneas 79
EVALUATE ...ttt sttt st bttt 80
GET VARS ... ettt sttt ettt ettt st et e et eneas 81
L R PSSR 82
PUT VARS ...ttt bbb sttt ettt bt e et 84
RECODE. ...ttt sttt b b e e resbe bt e e e e e 86
S S URRPTRSR 89
EXTERNAL VARIABLE BLOCK ...ttt st 91
INCLUDE EXTERNAL VARIABLE BLOCKoooiiiiienieeiesie st 92
DEFINE PROCEDURE VARIABLES.........ooii et 93
CONLIOI FIOW ..ttt et b se et e s ne et nnas 9
BIOCKS ...t ns 9
(oo Lo I @] o 11 0] oSS PR 96
CompPOoUNd CONAILIONSccveiiieieiierieee et re e sresne e e 97
PIECEUENCE ...t ettt bttt e 97
L L PRSPPI 99
JUIMP ettt b ettt a et b et b e b e Rt e benne e naennes 100
N el I = SRS 101
2] =] OSSR 102
3 I SRS 103
] SRS 104
L I | OO 106
[SRR 107
[N = SR 108
[P 109
L1072 I PSSR 110
WWHILE ... ottt sttt sttt b et e e 111
SUBPROCEDUREcooiiiiinesieie ettt sbe s st bt e e 112
END SUBPROCEDURE......ccuveueeueeuessessessessassessessessssessessessessessensensssessessessessessessessessessenesses 113

SIR/XS Visual PQL 3

EXECUTE SUBPROCEDURE.........ccocoiiiiieie et 114
Reading and WItING FIlES........coiiiecee et s 115
FIENAIMES ...ttt b e b et esre e e e naennean 115
(@] RSP RR 117
CLOSE ...ttt ettt ettt ettt b e e b e e R e et s Rt et e nbeeneeeenrenneas 118
DELETE PROCEDURE FILE MEMBER.........cccociiiiiiiineeses e 118
L= I TR 118
(@701 0] 0= TSSOSO 118
[/O List - INpUEt SPECITICALTONceeieeieeiieesie et 118
REREAD. ...ttt sttt b et e et ettt ne et nes 118
WWRITE .. ettt bttt e s besbenee e 118
[/O List - Output SPECITICALIONcveeieeiieiie e 118
DEtaDESE ACCESS.......eiiieieeieite ettt ettt e e a e et e e e e b eae e e e sbe e e e e e e e nneenes 118
Dataavailability during refrieval ... s 118
PQL CONNECT DATABASE ...ttt 118
PQL DISCONNECT DATABASE ...t 118
DATABASE IS sttt sae e 118
END DATABASE IS ... sttt 118
Case Processing COMMENGScuuuueiieiireiieieeieeseessee e sessesseessessesssnessesssessseesns 118
CASE IS, bbbttt Rt bbbttt e e e s 118
DELETE CASE ...ttt ettt 118
END CASE ... bbbttt nn e e 118
EXIT CASE ...ttt sttt ettt nes 118
NEXT CASE ...ttt sttt sttt et e s besse e te e et e saennens 118
PREVIOUS CASE ...ttt sttt st st sttt b tenne e e 118
PROGCESS CASE ...ttt sttt st be e e besne e e naesaenneens 118
RESTORE ClIR ..ottt sttt s esbe st besseeneeseesaenne e 118
Record Processing COMIMANGSoovreriierierieeiiesieesiesiesee e see e see e ssens 118
RECORD ISttt sttt sttt st ae st esbe st e tesbeese e tesbeeneeneenaens 118
DELETE RECORDooiiiiiisieeie sttt sttt s st sse et sseeneesaesnens 118
END RECORDcoiuiiiiiisieeienie sttt st st sseseesaesseesessesseessesseestessesnseseessessenns 118
EXIT RECORDccutiiiitieieie sttt st sttt st s se e naesae s e e stesseeneennesneens 118
NEXT RECORD.......cooiitiitieiisiesie ettt st es st sbe s sessesseessesaesseensesneensens 118
PREVIOUS RECORDcoiciitiiieie e siesiesee st ste et s sesseessessesseessessesneessessesns 118
PROGCESS REC ...ttt sttt sttt st se et sbe e saesseeneennenneens 118
RESTORE REC ..ottt sttt st sttt ennenne s 118
BACKUP ...ttt sttt e bt e be st e be et e neenne e 118
Processing Database JOUINAIS........ccvieeiireriene it 118
PROCESS JOURNAL ..ottt sttt sre e nes 118
JOURNAL RECORD IS......ooiiieeeeieresie ettt 118
EXIT JOURNAL IS .ttt s 118
EXIT PROCESS JOURNAL ...ttt st sre e seenes 118
NEXT PROCESS JOURNAL ..ottt 118
NEXT PROCESS HEADERcoooiiiiiiiiesiee ettt e 118
Concurrent ViSUalPQL.........oooiie ettt ae e e ere e e eae e e enne e 118

SIR/XS Visual PQL 4

ACCESSING TADIES ...t ettt a et e s e nrenns 118
ROW Processing COmMMENGScoviririeneneneeseeie s see st st saesnees 118
g0 Lo PR 118
Commandsin ROW BIOCKSooviiriiiiniee e e 118

OPEN TABLE ...ttt ettt bt be e b snenneas 118
CLOSE TABLE ...ttt sttt sttt st snenneas 118
PQL CONNECT TABFILE.......o ettt 118
PQL DISCONNECT TABFILE ..ottt 118
DELETE ROW ...ttt st st st n e n e e e seennenne e 118
END ROWV ...ttt a e et et e st e b e e e e sbesse e b e e ne e e e snenneens 118
EXTT ROW ..ttt ettt et b e e b e ae b e e e e snenne e 118
NEXT ROW ...ttt sttt st be e e e b e e e e nnenne e 118
PREVIOUS ROW.....cuiiiiiieienieeee ettt sae et s se e e sne s e e snenaeens 118
PROGCESS ROWS. ...ttt e e st se s ne e e nesbe e e e snenneens 118
ROW LS. ettt h et st e b e et e s ae e e e e e eeebeeneeneenneens 118
ODBC ClIBNL....cueiteeieeteeeeie sttt sttt b e et e et e s se e e e sbesae e s e saesneeabesneennesrenneas 118
CONNECT .ttt e et h e e b e s se e e e saeene e sbeeneeeesrenneas 118
SEBLEIMENL. ...ttt b bbb e bbb e e e e nne e 118
e 1] =SS 118
Graphical USer INTEITACE.uciieieciie ettt seene e 118
WINDOW ..ottt b ettt b e st e e e sbe e st e e e b e sneeeenneenes 118
WINDOW TITLE ..ot 118
WINDOW STATUS. ...ttt b e n e nae e 118
WINDOW OUTPUT ..ttt sttt sttt nnesne s 118
WINDOW CLEAR ..ottt sttt sttt st e 118
WINDOW SAVE...... ettt sttt st b e nsesse e nae s ens 118
IMENU ..o ettt e s b e st et e st e e st et e e beese et e s beeneeeenaens 118
MENUITEM ...ttt sttt sttt ne e s aesaennean 118
MENUSEDP......ceeiee e ettt e e saenneas 118

LI =7 AN I I = SRR 118
TBARSEP. ... e et 118

LN L I U USR 118
IMESSAGEottt st e bt b e et et eenaennean 118
ENABLE MENUITEM DISABLE MENUITEM.......cccoiiiiirenee e 118
CHECK MENUITEM UNCHECK MENUITEM......cccccoiiiiinieenene e 118
DISPLAY POPUPR LISTeiiiiiiiiieiesiesie ettt sttt s saenneas 118

[N I L USSR 118
BORDERS ...ttt ettt st e e be st et ese et e naennens 118
POSTY PE ...ttt b e bt he e e e e e b e e neeneenaens 118
BUTTON ...ttt sttt a e ae e b e s bt et e s beeseesbeneeeseeneennenneens 118
CHECK ..ttt e e bt b e e ae e e e e he e b e sae et e e e nbesreennennenneas 118
CHOICE..... ettt b et e e b e e e e e e sbe e e e nbesre e e e nnenneas 118
B D T e b bt ee e Re e e Re R e et Re e e e ReeRe e e e e naeens 118
COMBO ...ttt ekt e e eb e e st e e e b e e aeeneesae e e e nbesre e e e nnenneas 118
SPIN Lt b e et R e e R R e e R e Ee e e e e Rt e e e nReere e e e nrennean 118

SIR/XS Visual PQL 5

LABEL ..ottt bttt bbbt b et ne et e e nneens 118
N NSRS 118
S ST RS 118
RADIO ..ttt bbb et a et e R et e bt et et re et e neenneens 118
S I L RS PRRR 118
PROGRESS ..ottt sttt ettt et e be st e tesbeeneeneenaeens 118
LI =2, USSR 118
LI =SOSR 118
Dial0g M ESSAgE PrOCESSINGveeveerrieiieesieesieeseseeseeseeseessessesssesssesssesssesssesssesssesnns 118
Other MESSAgE TYPES. . .eiieeciee it eie ettt ettt et sre e s e e s reesreesneesree e 118
Dialog Control COMMANGS.........ccueiuiiiiieiierieesiee e et esre e sre e sre e e sreesseesseesree e 118
Other GUI COMIMENGSeeiieiiiieieesie ettt sre e e e sre e snesseeeesresneas 118
[=1 I USSP 118
INSERT DCONTROLc.uciiiiiiiieiesie ettt s e e 118
MODIFY DCONTROLooiiiitiiieiientieie ettt se e e eesnenneas 118
MODIFY DCONTROL FONTcoiiiieiiisiieiesiesee et s e 118
REMOVE DCONTROLooiiiiiieiesteeee et sne e 118
SELECT DCONTROLcotiiiiiiiteeierie sttt nesne e 118
CLEAR DCONTROL ..ottt sttt see e e e sse e e sne e enesnesneas 118
DEDIT MESSAGE ...ttt 118
GRID .ttt et b e bt bR e R e Re e bt eRe e e e ate e e e eennenneas 118
PQLFOIMS OVEIVIEW ...ttt ettt s e et e e st e e s te e sae e e saseesaseesateesnnesenseeeneeens 118
FOIM SETUCKUNE ... e e 118
EXAMPIES.....eoe ettt e e naenne s 118
COMMEANGS ...ttt st e bt e s be s st et e st e ese e besbenneenbesneeneensenneas 118
Specifying VisualPQL iN PQLFOIMSccoiiiieieseseeie e 118
USING POQLFOIMMIS ...ttt sttt sttt ne e naesaenne e 118
Field Editing OPerations.........cccooeeiereniesiesiiesie e see st s sessne s 118
MOVING from SCreen t0 SCIEEN........ooi ettt 118
AccessiNg RECOIS and ROWS........c.oiiiierieiieie ettt 118
UPdating @ RECOIcoveieiiiiiesieeeeie sttt et se e nnen 118
DElEtiNg RECOIS.oiueiieieitieeesie sttt st b et e e aenee 118
PQLFOrMS GENEral ClAUSES.......cccoiiiriieiesieeie sttt ee st sre et saesne s 118
FIEld BEIOMENTS ...t 118
SCrEEN CO-OFTINGLES.eeeiierieeite ettt b et sbe et e teeneeneas 118
[NO DATA et sttt bt st e tesbe e st e besbeene e tesreeneenaenneas 118
[NOJLABELS...... ettt sttt st sttt sbe et e enne 118
[NOJPROMPT ...ttt sttt sttt entesneeneesaesneeneas 118
O T ettt bbbt b e s h e e e e e eae et e s b e e ne e e e ereennennenaeas 118
ERROR ...t e et e et n e nnenne s 118
FORM ...ttt b et e e e bt it e e e sb e e se e e e eaeese e e e beeneenenaeens 118
SCREEN ...ttt b e bt e et e e se e e e sae e e e sbesnee e e nreeneas 118
ClBLISES ...ttt e e bt b e e bt e e e b e e R e e e s Re e e et e e ne e e e nnenneas 118
(@210 1o o OSSP ORURTURRON 118
END SCREEN ...ttt b e e et e e nne s 118

SIR/XS Visual PQL 6

(O =10 S <R RR 118
[5 LTS 118
ClAUSES ...ttt ettt e et e e e et e e s ee e eeeeeeaaaaeeeeeeeeesaasaaeeeeeseaaarereeseeanreeeeeraans 118
CALL SCREEN ...ttt ettt e et e ettt e e e e e e e et e e s s eaassaeeeesssaernreeeeessannens 118
ClAUSES ...ttt ettt ettt e ettt et e e e e et teeeseaaasseeeeeeeaassaeeeeesaaaeeeeeeeeaaaaeeeeeeesaaarrreeeeerannens 118
[D] I TR 118
PN =1 O B 1 TR 118
[U I 1O\ 118
(] N T AN N TR 118
(@] T [0 11 1SRRI 118
PQLFOIMS EITOr MESSAQES.......cveiiieiiiiiiesiiee sttt sttt se et srae e snne s 118
O IS V= GRS 118
210 1S £ 118
CLEARBUFRFER ...ttt ettt e s e s et e e e e e s sanens 118
CREATE BUFFER ...ttt ettt e e e s s s eaaae e e e s eaans 118
DELETE BUFFER ...ttt ettt et e s st e e e s e s sbaan e s e e s s enreeas 118
DELETELINEIN BUFFERttt 118
EDIT BUFFER ..ottt ettt ettt e e e an e e e s e s et rae e e s sarens 118
GET LINE FROM BUFFER ...ttt ettt e st a s 118
INSERT LINE INTO BUFFER.........o et 118
PUT LINE TO BUFFER ...ttt ettt et e s stae e e s 118
(DI N VAV 5 | 118
FUNCLIONS. ...ttt ettt e e e e e e et e e e s e et e e e eeseessbaeeaesssssbaneeesssessbennaeesans 118
List Of FUNCLIONS DY TYPE...ciiiieieiecee et 118
TrgONOMELITIC FUNCLIONS.......oviieieiesiesieie ettt 118
MAthEMELICAl FUNCLIONS........ii ittt e et e e e e et e e e e e s seeeeeeesraerreeeeeessannens 118
Argument LiSt FUNCLIONSc.oiieiiiiee ettt 118
ACIOSS RECOIT FUNCLIONS......eeeeeeeee ettt ettt et e et e e e e e e e e e e e e s eaeeraaeeeeeeeeanens 118
Date and TimME FUNCHIONS.ooieeeeeee et e eeeeeeee e e e eeeee et e e s eeeeaeeeesssasseeeeeesssassreeeesssanrens 118
GlODA FUNCLIONS.....eeee ettt ettt ettt e ettt e e e e s ettt e s e e e ae et eeessaessreeeeessenanrseeesean 118
SUNG FUNCHIONS.....cotiitieiesiesee ettt bttt snee e 118
CONCUITENE FUNCLIONS. ...ttt ettt et e ettt e e e e ee e e e e e e s easeeeeeesesanseeeeesaans 118
MiSCElANEOUS FUNCLIONS. ..o ieeeeeeeee e eeeeeeeee e e et e et e e e e e aeee et e s s ssassseeeessssanseeeeesessanrens 118
SESSION FUNCLIONS.....ceee ettt ettt et e e e e et e e s e e et e e eeseaanereeeesesanseeeeeseans 118
Schema & Database FUNCLIONSeeeiiie ettt e e e e e e e e e s e e e seereeeeeseans 118
Tabfile & TaADIE FUNCHIONS.....eeeeei ettt ettt e e e e et e e s e e e e e e e s s eannreeees 118
REA/NWVIITE FUNCLIONS ...ttt ettt e et e e e e e e e e e e e e senaaeeeeessanrneeeeeessannens 118
Dialog & MENU FUNCHIONSocuiieiiiiiieeie ettt eneas 118
(1= o =0 [(o) O S 118
ClIENt/SEIVEN FUNCLIONSovveiieiieteeee ettt e e e st e e e e e s eba e e e e s s s ssnraneeeeseans 118
Client Functions to adminiSter MaStESceeveiiieiiieiie e erre e e 118
Client Functionsto SQLServer/ODBC..........ooii e 118
Client FUNCLIONS TO POLSEIVEYccueiecie ettt et 118
PQLSEIVEr FUNCHIONS.........ooiiieeiie ettt et et e e s re e e neeeneas 118
(O C] I 0 0 Tox (0 T 118

List Of FUNCLONSTIOM A 1O Z ...ttt et e et e et e e e e e s e e eeneeeeeeeeeeeeeeeeens 118

SIR/XS Visual PQL 7

Y P 118
ACGS.....eetieieeite sttt bR R R e e 118
Y 1 TP 118
Y@ TP 118
1 118
N 3 PP 118
I 118
0 S TP 118
L U 1Y 118
I 1Y 118
I 1Y 74 118
0 S TP 118
ARSI N 118
AST Nttt e 118
ATAN. L e e e 118
ATTRNAME. ... ittt e e e s e e e e r s 118
Bl NDPARM....cccttuiiiiiiii e e s s e e e e e e e 118
N 118
o O o PP 118
o O 118
o1 N 118
L PP 118
L7 I 5 PP 118
L7 I N PP 118
7 IR 118
O I 118
CENTER..... ettt et e e e e s e e e s e e e e e s s e s e s e e e e raanrearees 118
CG BUFPN.....cttiiiiiciiii i s s s e e s e s e r e e rees 118
CG BUFSV.. ittt r s s e e s e s s e e e e e s e e s e s e reananraeenes 118
L Y 118
CG VARSV.... ettt e s s s e e 118
0 118
L I 5 118
CLI PAPP. ..ttt e e 118
L I e PP 118
L T T PP 118
L I] PP 118
6 TP TR 118
(611 1 TP 118
L@ 0 1N PP 118
L 0 118
L T PP 118
(60 Y PP PO 118
L N 118

SIR/XS Visual PQL 8

L@ Y PP 118
(6.0 1 PP PR 118
(6.0 TP T PR 118
Ll I 118
(6.0 U N PP 118
O I 1 PP 118
CURDI R.euiiiiiitt it e s e s e e e e e s e e e aree 118
D 118
I3 I PP 118
D 1 PP 118
D 1 5 PP 118
D 5 118
D N 5 118
D N 5 PP 118
D 0 118
D N 5 118
DBl NDV.cttuiiiiiitiis s irrsis s s s s s s e e e s r e e e e e re 118
DBINAME. ...ttt sttt st r s a e s bbb e s b b e s e a e s h e e e b e r e n e n e r e 118
I3 I 4 PP 118
D 118
I3 118
DEFIMEM ...cuiiieeti et e e e s e e s e e e e e e e e e e e e e raeee 118
D e I PP 118
D I PP 118
I3 I 118
D1 118
5 T 7 PP 118
3 118
D =1V PP 118
D I Y 118
3 1 Y 118
DI TEMROW. .. cctti ettt st e s e e e b s s s e s s s e e e s e e e es s a e e e a s e s s e e nna s s aaenes 118
D I = 1 118
D 1 118
3 1Y PP 118
D 1 5 PP 118
D I PP 118
D I = 118
5 TP 118
5 PP 118
3 I 118
N0 PP 118
@ PP TR 118
I 0 T 118

SIR/XS Visual PQL 9

G I PP 118
EX Pt 118
N 118
T TP 118
T O 118
I PP 118
T 118
0 118
T PP 118
I T I PP 118
I 0 I PP 118
Bl L L ittt e e e e re 118
FINDI TEM .ttt et e s e s s e s s rr s e e e ees 118
L 1 PP 118
S TP 118
I 118
GETBTINH. ..ttt e e e e 118
L IO O 118
L€ IO 1 PP 118
o 1 118
o 10 118
L I PP 118
L I PP 118
L I PP 118
L I 5 118
o I O 118
L I PP 118
€ I 1V 118
L€ I N PP 118
€ I 15 118
GETLBLH. ...ttt e e 118
L€ I 15 PP 118
LC 11 (O 118
LC o 1Y 118
L 11V PP 118
L€ 11V I PP 118
L€ 11V S PP 118
L 11V 118
C IV D 118
L 1Y] PP 118
C I R I8 118
L€ I T PP 118
L I] 118
L I 118

SIR/XS Visual PQL 10

L& I S 1 PP 118
o 15 118
o 15 118
GLOBALN. ...ttt e e e e e 118
GLOBALS ...ttt e e e ee 118
L IO PP 118
e 118
0 TP 118
LI 1 U PP 118
N U L 118
B 118
JULN. ¢ttt e e e e 118
S N 118
KEYORDER......ccttuuiiiiiti et rr i s s e e s s s e s s s e s s s s e aa s a s e eaa s e s e rraaa s e e eees 118
= TSP 118
1 TP 118
A 118
TP 118
T 118
0 1 0P PO 118
00 PP P T 118
0 PP 118
0 I PP 118
IMAKEDI R....iiiiiti et e e s e s s s e e e e e e e ea e e e e e e e r e e e ne 118
TP 118
IVAXR. .1t h e bR R R b n e r e a e 118
IMAXRECS. ...ttt et e e e s e s e e s e e s e e s ea s e e e e e s e e e e naeee 118
IVEAN. ..ttt b e b bR R r e r e 118
T A PP 118
T 1 N 118
T 118
Y A PP 118
TP 118
IV IR, ottt bbb bR bR R e r e 118
ML SINUM et e e e e s s e e e s s e e b s e e e e e e e e e e aeeee 118
TS 3 PP 118
YIS I N PP 118
T A 118
1Y TP 118
IMRECSI ZE... . iittuiiiiiiii et et r e e e s s s e e s e s e e s a e s e e s e s e rreanraaeee 118
1] I TP 118
PP 118
AN T O 118
NEXTROW. ...ttt sttt sre s b s s h s e e b e sb e e b e e n e r e e nnenre s 118

SIR/XS Visual PQL 11

NN T 7 PP 118
N S 4 118
N 118
INIVIAX 11ttt s h e b e e b bR R R n e r e r e 118
TSP 118
NOFCASES. ...ttt et et e e e s e s e s e et r e e e e s e s e rreanraeeee 118
0 TP 118
N 6 TP 118
N PP 118
N =0 PP 118
NSUBDI R....iiiiiittiie st s s s s e r s s s e s e s s e s s e s s eaa s e e s ea s e e e nnnrraenes 118
N 118
N s 118
NUMREGCS. ... oicette et e e e e s e s e e s e s s e e e ea s e e s e e s e e e enannnaenes 118
L 5 118
N 118
NVARDOC. ...ttt tttss e s rrs s e e e e a b e r s e e b s e e e e e s e e r e b s e e e e e s e e e e raeee 118
NVARS. .. 1ttt sh ettt bbb b s b e b e R e R e e n e r e r e r s 118
N PP 118
INWVVAL L.t b e bbb n e R e r e r e r e 118
L0 =5 R T 118
L0 O P 118
L 81 I P 118
PACK . ettt sttt e e e e e e e eee 118
PAD ... ettt e R e b 118
L 118
PP 118
Y 118
I I = PP 118
O Y 118
T O I 118
O O I PP 118
0 O 118
PROGRESS... ..ottt s s e s r e e ee 118
RACCESS.... .o cetiie it e e s e s e e e e s e e e e e e s e e e e e e e ee 118
L PP 118
L PP 118
REALAZ ...t e e s re 118
0 118
LI © O PP 118
O I Y 118
L PP 118
RECNANE. ...ttt sses s st sae s a e a s s b e s e e b e e s b e s b e e e e s b e sbe e e e s b e s be e e e s b e s e e nnenre s 118
RECNUMuiiiiiiti sttt s s s s e e s e e e e s e e s e e s s e e s s e s e r b s aaeee 118

SIR/XS Visual PQL 12

o o 118
o | 118
o e 2 5 118
L Y A P 118
L R S 4 =P 118
RND.....o oo veo e e ee s oo eseeeee s eeseeeeesesee s e eees e ee s e eee s e e s e e ee s ee e ee s eee e s eee s eee e 118
DN 1, e I T 118
(VA 50, 1\ 1 118
(L O = 118
LAY/ = 118
L 118
R 118
R T A 118
10 1 1O 118
]! 118
SERADIM NLuutututtiueniaisiassetssenestenessssasssssssssseseesratststsssretessesesestsmstsrsrsseesesesssrsronens 118
RS AN I Y I T 118
R o o = 118
R o = 118
SE R NE S, . ettt ittt e e e ettt s et s st e e easasarasas s st s ssenensnsssasasassssnsnensnsnrnrensns 118
]t 0 118
RS {1 @ 1 118
] L A = 1 118
R] 1N = 118
R o I = 118
Rt N = 118
R o AN 118
]l I 118
] 0 118
R o 1 TS 118
R ol AN N 118
I e 1 O 118
e = SO 118
K T 7 A 118
S I 118
] 118
R L S 118
SIVAX e eee e e e e e e e e e s e e e e e e e e e s e e s ee e 118
SV Ne oo eee ee e ee s eee e ee s e r e eee e 118
R (o A 15 118
SPUT oo e e ee e e e e e e s e e e ee e e e ee e eee e ee s eee e ee s ee s een e 118
SORT e e e ee e e e s e s s e e e e e e e e s s e e s eee e 118
SROH. .ot vee e e oo eeeeee e eeeeeeeeeee e s ee s e s ee s ee e e e e eee e ees e ee e ee e ee e eee e es e eee e eeees 118
SREAD. 1o e e eeeee e ee e e e s eee e es e ee s e e e s ee e s e e ee e ee e eee e e s eee et eeee 118

SIR/XS Visual PQL 13

R 1 I 4 P 118
Y 15 PP 118
STDEVR .. ittt e e 118
RS I D 118
1 118
1 1 P 118
51 TP P 118
ST TP 118
SV AL ittt e e 118
SYSTEM .ttt e e e a e 118
LI 0 118
TABI NDS....euuiiiitiiiiie s s e e e e e 118
172 0 118
7= 0 118
7= 0 118
TABNANME.c ittt e e e 118
TABRECS. ...cuiiiiitt it e e 118
TABVARS. ...cc ittt e 118
I3 N 118
TABVI NFS..ceeiiiiii i e e 118
TABVINANE. ... ittt e e e e e e 118
TABVRANG.......cittttuuiie ettt et e e s s s e e e s e s e e e e s e e s r e s e e e e e e 118
TABVTYPE. ..ttt e e e e 118
L1711 A 118
TABVVLAB. ...ttt e e e e e 118
TABVVVAL ..ceuiiiiit ettt e e e e e 118
TAN. et e 118
TANH. ¢ e 118
LI = T 118
LI 7 L 118
120 1 118
LI P 118
TFGRNAME. ...ttt e e e e e 118
TFGRPW. .ottt e 118
LI A A 2 P 118
LI 118
I 2 = P 118
IR N 118
TRUSPW...ceti it e e e 118
I 118
TEIMEC. .ottt e 118
LI 118
L1 3 2 118
TRI M et e 118

SIR/XS Visual PQL 14

TRIIVLR .1ttt ettt sttt s s et e s bt et e st e e st et e besae e st e sbe e st et e abeemeenbeebeenbeabeeneenbenreens 118
TRIIVR ettt ettt ettt ettt et e bt ekt et e e e e e R e e e e e R e e Rt e e e e Re e b e eRe e e e eR e eae e eheeReeRe e R e eRe e e e e nreens 118
TRUNC . .ttt eue et eteeseesaeeseesbeese e e e eseeae e s e ebeese e e e eae e bt ebe e e e ebeemeeebeeaeeseeeeebeennennenreens 118
BT @ B TSP PRSPPI 118
TSTOTM ettt ettt e et se e bt e s e e e e eheese e eb e e ae e e e b e e heems e nheeRe e e e eb e e me e b e ebeenbesreeneennenneens 118
TVIRL TE -t tteuteteeteeueesteeseentasaesseestesse e eesseeneesbeeme e s e b e eseensesbe e st et e ebeemeebeebeenbeabeeneeneenreens 118
UPDLEVEL ...ttt ettt iee et es e sse e e e s st e e sbesse e e e st s ae e e e she e e e saeensesbeemeenseeresneennenaenneas 118
UPGET ..t teeueeste ettt et se e et e se e e e eheese e e e eh e e ae e eb e e b e e ae e eR e e Re e ebe e Re e e e eR e et e eRe e Rt e neenReereennennenaean 118
UPPER. ... ttettestesteestestesteetesseetesbesseesbesbeeseesbesbeeneesbeemeesbeeseetesbeentenbeeneeneentenreeneenaennean 118
0 S SRR 118
A I 7. 1 PSS 118
VALLAB. ... euteteetteuee st eseeseeseeseessesseeeeaseeseesheeae e s e b e eaeesseabeeRe e b e abeemeebeeRe e b e eReennennennens 118
VALLABSC.....cuteteeueetesteeseassesseessesseessesseaseessesseaseassesseassesaeessasseanseseesseeeeasesseeneessesneans 118
VALLABSN.tetteueetessesseessessesssesseessessesseessessesseassesseessessesssessessssssessessssssessessesssessenns 118
VALLABSP.......ettteueeteateetesseeseestesseenseasesseeasesseeseeaseaseessesheemeeabeameeaeeeae e e e abeareenneneenneens 118
VALLABSV......utittaueeteateesassesseasseaseessessesseessesseaseaaseaseessesheensaaseaneessesseeeeabesreeneeneesnens 118
VARDOCSN. ...ttt ettt eteeseessesseessesseesesseaseeasesseeseesseaseessesaeemseabeameesaeeaeeeeanesneeneennesneans 118
VARGET ... ettt etteuee bt eseeeesseeseesbesse e e e eheea e e eh e e ae e s e b e eReeas e nheeRe e e e eb e e me e b e eheenbeabe e e e neenneens 118
VARLAB......c.uteutesteeueestesseasassesseessesseensesseessesseaseassesseaseessesbeaseenseaseeseenbesbeeasesseeneeneenreens 118
VARLABSC......uveteeueetesteessasseaseessesseassesseaseessesseaseasseaseessesheemsasseaasesaesaeeseasesseeneesesnens 118
VARNANME. ...t eteeutesteeseeasesseeseessesseasseaseaaeesesaease e s e emeesseabeeaeeaseaseeneenbeaaeensesbeenneneenreens 118
VARNANMEC.teteeueestessesseassessesssesseassesseaseessessesssassesseessessesssassessssssessesnssssessesesssessenns 118
VARLENG. ... ceutesteestesteeseestesseeseestessesssassesseessesseaseenseeseesbesbeeseassesseeneesbesseensessesseensessenns 118
VARPOSI Toutteutesteeueestesseseessessesssesseessessesseessessessesssesseessessesssassessesssessesnsessessesesssessens 118
VARPUTeiuteteetteuee st sseesesseeaeessesse e e e sheeseeeheeae e s e b e eaeeaseaheese e e e eb e e meebeebeeabeabeenneneenneans 118
VARTYPE. ... ettt ettt ettt ettt e e e st s he e e e saeese e s e eae e b e ebeeme e b e es e e e e nbeebe e s e sbeeanennenreens 118
A Y TP 118
VTYPE ettt ettt ettt a ettt ekt e e e e et e a e e e e e Rt e Rt e b e e Re e bt eh e e e e R e ene e eheeReeRe e R e eRe e e e e nreens 118
VMACCESS. ... ttenteereeneesseeseessesseeseeseesseessassesseessesbeaseenseese e beebeeneebesseeneesbesseensesbeeneeneenreens 118
VI NGO -ttt b etk e e et e e b e e e e e e b £ e ae e s e eb e e Re e e e eb e e me e b e ebeenbeere e e e nnenneens 118
VI N Ntttk b et e b e e e e ae e b e eb e e s e e e e ee e e me et e ebe e b e ere e e e nnenneens 118
LT N0 SRRSO 118
VI NPO.... ettt e etttk e e e e he e e e e e e ae e s e b e e Rt e s b e eh e e Re e e e eb e e me e b e ebe e b e ere e e e nnenneens 118
VI NSEL L .ttt etttk et e e e e e b e b e e e e b e e s e e e e eb e e be e e e ebeeneenenreens 118
W NSELP. ...ttt sttt sttt ese et e s bt e st et e e st et e e be e st e beese et e nbeebeeneesbeeneeeenreens 118
WRECSEC. ...t teutesteestesseeseestesseeseessessesssassesseessesseaseenseensesbesbeessabesseeneesbesseensessesneensenrens 118
VIARSEC. ... ettt steeseestesseeseestesseeseassesseestesbease e e e eseebesbeeneebeaseeneenbeebeenseabeeneeneenreens 118
YESNO. ..t euteteeteesee st et e ee e e see bt e st e e e sseeae e b e eheeae e R e e Re e e e e Re e e e R e eRe e Rt eReeRe e e e eReeneenenreenes 118
The VisUalPQL DEDUGOES.......ccoeiiiiiieie et e e snaesnaesnneenee s 118
ETON IMESSAgES. ... eeeeetie ettt ettt sttt st e be e e b e e bae e s e e e ne e e 118
Overview to the VisualPQL GUI DEDUJJENcccoveirirriieiieiiesieesieeseesiee e see e snee s 118
SOUICE ...ttt ettt ettt h e ettt ettt b e e s e e ab e e b e e b e et e e bt e be e b e e sheennnesnnennn e e 118
D = VTSP URUR ORI 118
SEBCK ..t e e bt e e e e e e Re e e e nneeneas 118

SIR/XS

Visual PQL

15

SIR/XS Visual PQL 16

| ntr oduction

VisualPQL (Visual Procedural Query Language) is a structured programming and
application development language that alows you to develop complete applications. Y ou
have full control of your application logic together with numerous high-level, non-
procedural features and constructs for accessing datain a SIR/XSrelationa database.

The source of aVisuaPQL program is aset of commands that are typically either a
member (with a:T suffix) in the procedure file or atext file. Use atext editor in SIR/XS
to create and modify programs.

Main Routines

A program has a single main routine that may optionally reference subroutines. A main
routine can begin with a PROGRAMcommand. A main routine that accesses any database
begins with a RETRI EVAL command. The main routine ends with an END PROGRAMOr END
RETRI EVAL command. For example, a simple program might be:

PROGRAM
VWRI TE 'Hello Worl d’
END PROGRAM

In addition to programs and subroutines, Visua PQL provides a system for the creation
and maintenance of data entry screens known as PQLForms. A PQLForms main routine
begins with a FORMcommand and ends with an END FORMcommand.

Main routines can be re-compiled each time they are run, or can be compiled and saved
as an executable member with an :E suffix. A program may use input parameters that are
specified at run time.

Subroutines

A subroutine is an independent routine that is executed from the main routine or from
another subroutine. Subroutines begin with the SUBROUTI NE command and end with the
END SUBROUTI NE command.

Subroutines must be pre-complied before they are referenced in an executing program.
When a subroutine is compiled, it creates a member with an :O suffix.

A PQLForm can be saved as a subroutine.

External Variable Blocks

SIR/XS Visual PQL 17

An external variable block is ablock of variables used by several routines. An externa
variable block begins with the EXTERNAL VARI ABLE BLOCK command and ends with the
END EXTERNAL VARI ABLE BLOCK command. External variable blocks must be
precompiled before they are referenced in a compilation or execution of a program. When
an external variable block is compiled, it creates amember with a:V suffix.

The five commands, PROGRAM RETRI EVAL, FORM SUBROUTI NE and EXTERNAL
VARI ABLE BLOCK begin aroutine. The corresponding END commands end the routine. All
other Visual PQL commands must be included in one of these routines.

Compiling and executing

To compile and execute the program from the menu system, select RUN from the Member
or Filediaogs.

When aprogram isrun, it executes, creates any files or other outputs and displays any
messages or interactive output in the scrolled output window. When the run is complete,
the next command is read from the input source. If there are no more commands, control
isreturned to the user.

Options on the RETRI EVAL, PROGRAMand FORM commands determine whether routines
are compiled, saved or executed.

Running a program with no options on the initial command, compilesit and then
executes it. The NOEXECUTE option compiles without executing. The SAVE option,
together with the name of a member with an :E suffix, saves the executable version.
Specify the REPLACE option to alow an existing member of the same name to be
overwritten.

VisualPQL Procedures

Main Program and Retrieval routines may use one or more VisualPQL Procedures. The
program creates the data for the procedure with the PERFORM PROCS command. The
procedure specifications determine how the data is then output. Multiple procedures can
be included in a single program so that one pass of the database produces multiple
outputs.

Some procedures create output text files, others create files in specific formats that are
directly useable by other software packages. All procedures, except the Full Report
procedure, are single commands with option keywords.

The Procedure Table
The Procedure Table isthe internal table that is built as the program processes the data

and contains a set of data records. Each record in the table is made up of the procedure
variables and contains a value for each variable. The default procedure variables are all

SIR/XS Visual PQL 18

the program variables of the main routine excluding arrays. An aternate set of procedure
variables can be specified with the DEFI NE PROCEDURE VARI ABLES command. Only
variables available in the main routine can be included in the Procedure Table. Every
time the PERFORM PROCS command is issued, a set of valuesis copied into the procedure
table.

It is possible to specify alist of variables on the procedure definition itself. If thisis not
done, the procedure operates on all the variables in the procedure table.

SIR/XS

Visual PQL 19

VisualPQL Syntax

The syntax rules for VisualPQL are:

Begin each new command in the first position on aline. There is no specia
character that indicates the end of a command.
To continue acommand on the next line, leave the first position blank and begin
the continuation text in any other position. Commands can be continued for as
many lines as required. There is no special character at the end of the line that
indicates the command is being continued on the next line. Y ou may split lines on
blanks except where the command itself contains blanks e.g. PROCESS CASES - do
not split command words across lines. Do not split commands, keywords, names
or strings in quotes across physical lines. Otherwise the components of a
command may be split as necessary. For example:

WRI TE I D

NAVE
SALARY

To indent commands for readability, specify aperiod (.) in the first position of a
line, followed by any number of spaces and then the command. For example:
PROCESS CASES
PROCESS REC EMPLOYEE
WRI TE | D NAME Bl RTHDAY SALARY

. END REC
END CASE

If you wish to specify more than one command on asingle, physical line, use a
semi-colon (;) to separate the commands. Use of multiple commandson alineis
not recommended since it makes the reading and modification of source more
difficult.

Any text on aline following avertical bar (|) istreated as comments. Vertical bar
comments are not continued to the next line. The COMVENT command specifies
that the whole line is a comment.

Commands and keywords cannot be abbreviated athough there are synonyms for
some commands. For example, PROCESS REC is a Ssynonym for PROCESS RECORD;
Cisasynonym for COMVENT.

A new command that does not begin with avalid command name or synonym, is
taken to be an implicit covwPUTE. Be careful when relying on implicit compute
statements and avoid using names for variables that conflict with commands.
Even names that do not conflict now may conflict in subsequent releases so it is
always safer to specify the command word COVPUTE if a program is going to
continue to be run on arecurrent basis. Any variable name can be used in
conjunction with the command; there are no specific reserved words. The
following two statements are identical.

SIR/XS Visual PQL 20

COWPUTE TOTAL = 10 + 15
TOTAL = 10 + 15

Names

There are various types of entitiesin SIR/XS such as databases, records, variables, etc.,
each of which must have a name. Standard names do not begin with a number and may
contain letters, numbers and the four characters $, #, @, and _. Standard names contain
up to 32 characters and are translated to upper case.

Y ou can also use non-standard names by enclosing the name in curly brackets ({}). A
non-standard name can contain up to 30 characters and may use any character including
blanks; no trandlations are performed on non-standard names.

When specifying commands, keywords and standard names, upper and lower case text
are treated identically. For example the following two lines are identical:

COWUTE A = B

conpute a b

The following preserves the lower case a for a name:

COWUTE {a} = B

In an executing program, names are most frequently for variables. For example the
expression:

COWUTE A = B

This means take the contents of variable B and make these the contents of variable A.

When referring to other entitiesin acommand, it may not always be as obvious. For
example:

CLEAR BUFFER BUFNAME

The name BUFNAME could either be the name of a buffer or the name of avariablein the
program that holds the name of the buffer. In fact, in the buffer manipul ation commands,
the name is a variable name or string expression not directly the buffer name. However,
just as a command might be:

COWUTE nyname = ' Fred'
So avery simple string expression can be used to specify a buffer name e.g.

CLEAR BUFFER ' Previ ous Conmand'

Where a command uses expressions rather than directly naming an entity, it means that
the name is not known until the program is run and, since many commands need to know
names during compilation, thisis not allowed everywhere. The syntax of each command
specifiesif thisis allowed.

Some commands that normally require a name specified directly may also allow
expressions where you have to enclose the expression in square brackets [] so that the

SIR/XS Visual PQL 21

compiler can recognise that an expression is being used to derive the name. Again the
syntax of each command specifiesif thisis allowed.

e.g.

EXECUTE SUBROUTI NE { menber _nane | nmem nane_exp_in_brackets }
So the following are identical:

EXECUTE SUBROUTI NE OPENF
COVPUTE SUBNAMVE = ' OPENF'
EXECUTE SUBROUTI NE [SUBNAVE]

In particular, the Wwrl TE command allows alist of variables to be written but expressions
can be used by specifying them in square brackets, which can be very convenient and

avoids the need for new intermediate variable names e.g.
WRI TE [capital (nane)]

Note

Be careful if using non-standard names in commands that allow either a variable name
or a string in quotes as a name specification. If specifying a non-standard namein
guotes, do not specify the curly brackets e.g.

CLEAR BUFFER ' Previ ous Command' Not
CLEAR BUFFER ' { Previ ous Command}'

If you specify CLEAR BUFFER { Previ ous Command}, thislooksfor alocal variable
called Previ ous Conmand which is expected to contain the name of the buffer.

Smilarly, be careful when manipulating non-standard namesin a program. If your
program is passing names to the software as strings at execution time, then it must pass
the name without the curly brackets.

Also note that if a program gets back non-standard names from functions, they are not
wrapped in curly brackets. If you are constructing commands or other processing where
you would need curly brackets around any non-standard name, use the STDNAME function
to do this.

SIR/XS

Variables

Visual PQL 22

Variables may be defined explicitly by command or implicitly by use. There are five
types of simple local variables

DATE

INTEGER

REAL

STRING

TIME

Date variables are four byte integers. The value of adate integer isthe
number of days since the beginning of the Gregorian calendar. October
15, 1582 isday 1. The date format defines the input and output format.
See date formats for a compl ete description.

Integer variables are 1, 2 or 4 byte integers. 4 bytesis the default. The
value ranges are:
INTEGER*1 -128 to 123;
INTEGER*2 -32,768 to 32,763;
INTEGER*4 -2,147,483,648 to 2,147,483,643

Real variables are floating point numbers allowing afractiona
component. REAL* 4 (single precision) and REAL* 8 (double precision)
are allowed. Double precision is the default.

String variables are strings of a specified length from 1 to 4094. If
more characters than the declared string length are assigned to a
variable, the string is truncated to the declared length.

Time variables are four byte integers. The value of atime variableis
the number of seconds since midnight. The time format defines the
input and output format. See time formats for a compl ete description.

To define avariable explicitly, specify the variable type followed by alist of variable
names. For example:

| NTEGER* 4
STRI NG 40
REAL* 8
DATE

TI ME

mont hl nont h2 nont h3
namel surnane

totl to tot9

bi rt hday (' DDI MM YYYY')
mnutes ('MM)

To define avariable implicitly, assign avaue to an undefined name. This creates the
variable. Implicit numeric variables are REAL*8. Implicit string variables are a default
length that is normally 32 characters but this can be altered with the
- STRING LENGTH command.

Datesand Times

If dates or times are assigned to another variable, the definition of that variable
determines the value received. If the variable is numeric, it receives the numeric value; if
astring, it receives the formatted date or time string. If the receiving variableis
undefined, a numeric variable isimplicitly created.

SIR/XS Visual PQL 23

Missing Values

Variables may contain Missing values. A variable has amissing valueif it is undefined or
allocated a value defined to be amissing value. If any variable in a computation contains
missing values, then the result is missing values. (Other than those functions that
specifically test the presence of missing values.)

Declaring and using Arrays

Arrays can be defined. Each array is named and is one of the basic | NTEGER, REAL,

STRI NG, DATE or TI ME variable types and has one or more dimensions. Array names
cannot be the same as any of the VisualPQL function names. Specify the number of
variables in each dimension. Thereisno limit to the number of dimensions nor the
number of variables in any dimensions (other than memory or other machine limitations).
An array must be explicitly declared by a command. For example:

| NTEGER*4 ARRAY nonthtot (12)
STRING*10 ARRAY snane (8)

REAL*8 ARRAY sum t sun(10, 20)

DATE ARRAY fdays (12) (' DDDD)

TI ME ARRAY ni nutes (24,60) (' M)

Array dimensions normally start at 1 and proceed for the number of entries specified. An
aternative start dimension can be specified where more natural or convenient using a
'from:to’ syntax e.g.

| NTEGER*4 ARRAY years (1900: 2099)
This specifies an array with 200 entries that is referenced by values from 1900 thru to
2099.

Array dimensions can be redefined ‘on the fly' with the REDEFI NE ARRAY command. This
allows you to grow, shrink or redimension any array programmatically.

Array entries can be sorted with the SORT command.
Array Element Reference

In general, a subscripted array element can be used wherever an equivalent simple
variable can be specified. A subscripted array element consists of the array name and the
element locations for each dimension in parentheses. The subscript may be a constant or
anumeric expression. For example:

COVPUTE MONTHTOT(12) = TOTAL

COVPUTE TOTAL = MONTHTOT(MONTH)
COVPUTE JANO1 = DAI LYTOT(1, 1)

SIR/XS Visual PQL 24

The SET and PRESET commands can operate on whole arrays or on specific elements. For
example:

SET MONTHTOT * (0) | whole array
SET MONTHTOT (1) (0) | specific el enment

SIR/XS Visual PQL 25

Control Flow

Program logic (the sequence in which commands are executed) is determined by how
data matches specified logical conditions. Complex conditions can be specified by using
connectors such as AND or OR. For example:

| FTHEN (A EQ B)
WH LE ((A EQ B) AND (C NE D))
| F (NOT E LT F)

Block Structures

VisualPQL is primarily ablock structured language. That is, the execution of a complete
block of commands depends on the results of conditions. The various block structures are
specified by a command that starts the block and an END command that ends the block.
For example LOOP/ END LOOP, | FTHEN/ END | F.

Blocks may be nested inside other blocks. A block must be completely inside another
block. Overlapping blocks are not allowed.

Control commands in blocks
EXI T blocktype

An EXI T command stops execution of the block at that point and transfers control to the
first command following the end of the block. An ExI T can be used in any block. A
blocktype is normally specified on the EXI T command and this exits the innermost block
of that type. An EXI T without a blocktype exits the innermost block.

NEXT blocktype

Many blocks are looping structures. That is, the commands within the block are executed
repeatedly until some controlling condition is met. Commands such as WHI LE iterate
while a specific condition is true. Commands such as PROCESS REC retrieve a new record
on each loop until the end of that set of records.

In looping blocks, the NEXT command transfers control to the first command in the block
at the next iteration. A blocktype can be specified on the NEXT command and this transfers
control to the innermost block of that type. A NEXT without a blocktype transfers control
to the innermost looping block.

For example:

SIR/XS Visual PQL

RETRI EVAL
PROCESS CASES ALL
PROCESS RECORD EMPLOYEE
I F (GENDER NE 1) NEXT RECORD
GET VARS ALL
PERFORM PROCS
END PROCESS RECORD
END PROCESS CASE
REPORT
END RETRI EVAL

|F and | FnoOT

| F and | FNOT are conditional commands that are not block structured. When true, these
commands execute command(s) that are specified as continuations of the | F, | FNOT

26

command itself. The next new command (i.e. command starting in column 1) finishes the

condition. If specifying multiple commands, separate each by a semi-colon (;).

Most commands can be specified with the | F command except:

other | F, | FNOT commands. (Use the block structured | FTHEN if you need to nest

conditions.)

data definition commands
block definition commands
compiler directives

For example:

PROCESS CASES
PROCESS RECORD EMPLOYEE
IF (GENDER EQ 1) WRI TE NAME
. END PROCESS RECORD
END PROCESS CASES

SIR/XS Visual PQL 27

Filel/O

A program can READ and WRI TE files.

Files can be opened and closed with the OPEN and CLOSE commands respectively. If afile
is not opened or closed explicitly, the first occurrence of a READ or WRI TE opens the file
with default settings; reaching the end of the program closes thefile.

Binary Files

Normally files read or written by explicit reads and writesin Visua PQL are text files that
contain readable characters together with end of record characters and can be viewed
with atext editor. VisualPQL can also read and write binary files, that isfilesin internal
non-text formats. Any file can be read as a binary file and the program is able to process
the data exactly asit ison thefileif the format is known. For example, a Visua PQL
program could copy an image file or an executable or alibrary.

Format Specifications

The READ command reads input from the file and assigns values read from the input to
program variables. READ formats input data according to an input specification that is a
list containing variable names and their formats. The formats can be fixed-field, free-field
and can contain positional parameters.

READ is not ablock control statement and simply executes without looping. In order to
read through a complete file, it is necessary to enclose the READ in alooping block,
typically awHl LE block that tests an I/0 return code and finishes when the end of fileis
reached.

The wWRl TE command writes output formatted according to an output specification that is
alist containing variable names and their formats. The formats can be fixed-field, free-
field, or pictures, and can contain positional parameters. If an output format is not
specified, defaults are used.

Typical input/output specifications might be:

wite ("test.out') valuel(f5.2) 2x code(A2) ',' value2(i*)
read ('test.out', iostat=status) inputl(f5.4) 2x input2(i*) input3(i*)

SIR/XS Visual PQL 28

Database Access

Begin a program that accesses the database with the RETRI EVAL command. By default,
this opens the database for read access only. Specify the UPDATE option on the RETRI EVAL
command to open the database for write access.

Multiple Database Access

The VisualPQL commands PQL CONNECT DATABASE and PQL DI SCONNECT DATABASE
connect and disconnect databases and set the default. A VisualPQL retrieval can
reference more than one database. A retrieval can access a specified database with a
DATABASE | S that starts a block of commands. Inside this block, all references are to
variables in the new database. Any standard commands can be used in this block. When
the block is exited, the original database is made current.

Case Blocks

If the database is a Case Structured database, each case in the database has a Common
Information Record, that isreferred to as the CIR. The CIR contains the common
variables including the case identifier that uniquely identifies each case.

Specify one of the Case Processing commands to access cases. A case processing
command defines ablock of commands, a Case Block. The block is terminated with an
END CASE command. Within a case block, other commands may get values from or put
valuesinto common variables. As a case block is executed, a CIR is read into memory
and other commands within the block use this. When the case block is exited or when a
new CIR iscalled for, the record is replaced in the database if it has been modified and is
overwritten with the new data. Each time a case is accessed with one of these commands,
the CIR is available to other commands within the block.

Process cases using either the PROCESS CASES command that reads cases serially through
the database or the CASE | S command that reads a specific case if it exists and can create
anew caseif it does not already exist. Use the NEW CASE | S and OLD CASE | S constructs
to control processing depending on whether a case exists or not. NEW CASE | S creates a
new case if one does not exist and skips the block if the case already exists. OLD CASE | S
reads a specific case and skips the block if the case does not exist.

If aretrieval isrun on a case structured database without a case processing command, an
automatic PROCESS CASES ALL is generated.

Record Blocks

SIR/XS Visual PQL 29

Databases contain Record Types. Specify one of the Record Processing commands to
access records. On case structured databases, record processing must be nested within a
case block unless the record is accessed using a secondary index. A record processing
command begins a Record Block. The END RECORD command ends a record block. Within
arecord block, other commands may get values from or put valuesinto the variablesin
that record. As arecord block is executed, arecord is read into memory and other
commands within the block use this. When the record block is exited or when a new
record isread, the record is replaced in the database (if it has been modified) and is
purged from memory.

Process records either using the PROCESS RECORD command that reads and selects
records serially through a single case (on a case structured database), through the whole
database or through a secondary index or using the RECORD | S command that reads a
specific record if it exists and can create arecord if it does not already exist. Use the NEW
RECORD | S and OLD RECORD | S constructs to control processing depending on whether a
record exists or not. NEW RECORD | S creates a new record if one does not exist and skips
the block if the record already exists. OLD RECORD | S reads a specific record and skips
the block if the record does not exist.

The record processing commands specify arecord type and may specify a particular
record or subset of records to retrieve. If there are no matching records, then the block of
commands is skipped.

In the following example, the WrI TE is not executed if there is no record type 2 for an
employee and thus that employee does not appear in the output:

RETRI EVAL
PROCESS CASES ALL
OLD RECORD | S EMPLOYEE
GET VARS ALL
PROCESS RECORD 2
GET VARS ALL
VRI TE | D NAME CURRPOS STARTSAL
. END PROCESS RECORD
END RECCORD | S
END PROCESS CASE
END RETRI EVAL

SIR/XS Visual PQL 30

Table Access

A Tableis analogous to a database record type and a Row is analogous to arecord. These
offer an alternative storage mechanism. Tables are stored on Tabfiles. Tables may be
accessed from within either programs or retrievals. Multiple tables on multiple tabfiles
may be accessed in asingle program.

Table processing differs slightly from record processing as follows:

Tables are maintained in creation sequence rather than in akey sequence.

The only commands that deal directly with variablesin atable are GET VARS and
PUT VARS. This means that when retrieving arow of atable, the values of the
variables must be moved into local variables with GET VARS. To update the values
of variablesin atable row, the local variables are moved into the table row with a
PUT VARS.

The PROCESS ROWS and ROW | S are analogous to the record commands and there
areasotheoLD ROW I S and NEW ROW | S constructs. Each of these commands
defines ablock of commands, a row block, that is terminated with END ROW
Tabfiles must be connected prior to the compilation of the program or subroutine
either through the menu or the CONNECT TABFI LE command. Tabfiles accessed
during execution of a program or subroutine must be connected. The PQL
CONNECT TABFI LE may be used to connect tabfiles during execution.

SIR/XS Visual PQL 31

ODBC

Open DataBase Connectivity isaWindows based standard to allow communication
between software from different vendors. Queries are done using SQL syntax.
Visual PQL can set up ODBC connections, perform SQL queries, retrieve information on
the results of the query and then retrieve the data.

SIR/XS allows other packages to access SIR/X S data through the SirSQL Server and
Visua PQL can query this as any other ODBC source. Visua PQL can aso query the
SirSQL Server in amore direct fashion eliminating some of the ODBC overheads or
allowing Visual PQL clients to operate on non-Windows platforms. Communication
between client and server is machine-independent so allowing communication between
any of the SIR/XS supported architectures providing these are networked using tcp/ip.

SIR/XS Visual PQL 32

Graphical User Interface

When SIR/XS starts, it invokes amain VisualPQL program that defines a main window
and menu system. This program receives control when the user selects alowest level
menu item. It can deal directly with the requested function, call sub-routines, use sub-
procedures or any Visual PQL construct and can call other VisualPQL programs and
SIR/X S functions. The program can enable, disable, check or uncheck menu items as

necessary.

The compl ete source code for the user interface is supplied with the system and the
menus and dialogs can be used as examples for application development. Y ou can modify
the main menu program or create a customised version and run that when you start the
system.

Once the system is running, any Visual PQL program can output information into the
main window (such as title and status) and put text in the window using the normal WRI TE
command. Text output is scrolled and a line can be up to 4000 characters wide. Programs
can also save, print or clear the main window.

Visua PQL programs can display and get information through dialogs. There are
commands and functions to define a dialog and to interact with the user through the
dialog.

There are commands that directly pop-up boxes that ask the user to respond, for example
to display an error message or to ask for an OK or Cancel response. There are also
commands that display afile browse box appropriate to the operating system when
opening or saving files and commands that print files, displaying a print box to alter print
specifications as necessary.

The Dialog Painter helps create Visual PQL dialogs. This gives adeveloper an interactive
means of creating dialogs and of generating appropriate message processing blocks.

PQL Forms

PQLFormsis an extension to VisualPQL that creates al the necessary logic for sets of
linked, interactive dialogs for data entry, retrieval and update. A complete set of dialogs
isasingle Visual PQL routine known as a Form.

A Form can be created and maintained completely through the Forms Painter and thisis
the recommended way to develop forms.

There are additional commands that are only valid within a PQLForm. These define what
variables are on each dialog, how they are displayed and edited, how the dialog is to look,
and how dialogs are linked together. A PQLForm has built in buttons and associated

SIR/XS Visual PQL 33

logic to allow the user to navigate through a set of records and to display, edit and insert
data according to the database description. A developer can use all standard Visual PQL
commands as necessary and these are executed at appropriate places in the form.

A PQLformisrunin the same way as any other VisuaPQL routine either directly or
from amenu.

Once aform has been developed, it can be used by many people for data entry or for
guerying data.

Editor

A program can invoke an editor for the user to enter text. Once the editor isinvoked,
control does not return to the program until the user exits the editor. The editor can use
buffersto store data and there are Visual PQL commands to create, read and manipulate
the contents of a buffer. This alows the use of buffersto enter and edit unlimited
amounts of text with minimal programming. The user can choose to use afamiliar
standard editor or the SIR/XS internal editor (asimple gui style text dialog).

SIR/XS Visual PQL 34

Functions

Functions return a single numeric or string result derived from the arguments of the
function. In general, the functions can appear in any string, arithmetic or logical
expressions in a program. There are various types of functions such as Trigonometric,
Mathematical, Date and Time, etc. For example, the function CAPI TAL (stri ng)
capitalises the first al phabetic character of the string and the first a phabetic character
following a blank. All other characters remain unedited.

PROGRAM

STRING * 50 NAME

NAME = "this is the first day of the week’
NAME = CAPI TAL(NAME)

VWRI TE NAME

END PROGRAM

Thefirst character of every word in the string variable NAVE is capitalised producing the
following output:

This Is The First Day O The Wek
As another example, FORVAT (X) converts anumber to astring in free-field format. The
following gives the string '1.3":

XST = FORMAT(1. 3)

There are a set of "across-records/rows" functions that compute statistics for a number of
records or rows that may only appear in PROCESS REC or PROCESS Rowblocks. They use
the values of avariable during the processing of a PROCESS REC or PROCESS ROWIoop
and produce a single value such as atotal or an average. They ignore values that are
missing or undefined.

SIR/XS Visual PQL

Sour ce Commands

SIR/XS has a number of features that can assist when developing Visual PQL programs.
These include features to:

Document programs with comments;

Include sets of code from various sources;

Substitute Global variables,

Generate code to compile;

Specify conditional compilation rules for sets of code.

35

SIR/XS Visual PQL 36

VisualPQL Programsand Routines

Every Visua PQL program or subroutine starts with RETRI EVAL, PROGRAM, SUBROUTI NE,
or FORM Retrievals and programs are main routines and aretrieval is allowed to access
SIR/XS databases whereas a program is not.

Subroutines are independently compiled Visual PQL routines that are invoked with the
EXECUTE SUBROUTI NE command from other routines including other subroutines.
Subroutines can RETURN to higher level routines.

PQL Forms have a different structure because they contain predefined logic see
PQLFor ns.

Visual PQL procedures can only be included in amain routine. Retrievals, programs and
sub-routines use the PERFORM PROCS command to put datainto the procedure table.

The genera structure of main routinesis:

RETRI EVAL or PROGRAM comrand
..... pgl commands

..... pgl commands

EXECUTE SUBROUTI NE

...... pgl commands

PERFORM PROCCS

...... pgql commands

END RETRI EVAL
The general structure for a subroutineis:

SUBROUTI NE

..... pgql commands
..... pgl comands
EXECUTE SUBROUTI NE
...... pgl conmmands
...... pgl commands

END SUBROUTI NE

SIR/XS

Visual PQL 37

RETRIEVAL, PROGRAM, SUBROUTINE

{ RETRI EVAL |
PROGRAM |
SUBROUTI NE nane [(input_list)] }

e 1 1 e e e) e e]] e]] e)] e)])))] —— ——

Cl RLOCK [=] | ock_val ue]
CRWARN | NOCRWARN|

DEBUG [= nane]]

ENDVSG | NOENDMSG
EXECUTE | NOEXECUTE]

CET = nmenb_nane: E]

LI BRARY = (family list)]
LOADI NG = num |t _one]
LOADVAP]

LOCK [=] | ock_val ue]

M SSCHAR = char]
NOARRAYMSGE

NOAUTQOCASE]

PROGRESS]

RECLOCK [=] | ock_val ue]
RETURNI NG (1ist)]

SAVE = menb_name: E [REPLACE] [PUBLI C][PROCS | NOPRCCS]]
SEED = num]

SHOWM SS]

STATIC | DYNAM C]
SUWFI LE = fileid]

TABFI LE = tabfil e_nane]
TUPDATE [(list of tabfiles)]]

UPDATE]

UPSTAT | NOUPSTAT]
NODATABASE]
NOTUPDLOG]

VARMVAP | NOVARMAP]

There are no required options on RETRI EVAL Or PROGRAM

The subroutine name is required on SUBROUTI NE and is the name of the compiled
subroutine. The name of the subroutine can be qualified with procedure file and family
prefixes and passwords.

RETRI EVAL specifies the beginning of a main routine that accesses the default database. A
retrieval opens the database files for read operations unless the UPDATE option is specified
to open the database for write operations. All commands and procedures may be used in a
retrieval. A retrieval isterminated with the END RETRI EVAL command.

PROGRAM specifies the beginning of a main routine that does not access database data. A
program can use exactly the same features as aretrieval, except for the commands that

SIR/XS Visual PQL 38

access database data. A program can access data in tabfiles and in external files. A
program is terminated with the END PROGRAM command.

SUBROUTI NE specifies the beginning of a subroutine that isinvoked by other routines. All
of the commands may be used in a subroutine but VisualPQL procedures cannot be
specified. A subroutine can access data in databases, tabfiles and in external files. The
codein asubroutineislogically separate from any other routine. A subroutineis
terminated with the END SUBROUTI NE command. The RETURN command explicitly returns
control from a subroutine to the higher level routine. If a subroutine does not explicitly
RETURN, control is passed back at the end of the routine. Subroutines may invoke other
subroutines and may invoke themselves recursively.

OPTIONS

The options on these commands specify compilation and execution conditions. Some
options apply only to programs, some to retrievals and some to subroutines. Where an
option does not apply to a particular type of routine, thisis noted.

(input list) A subroutine may have input parameters. These are positional
parameters corresponding to the EXECUTE SUBROUTI NE list of
parameters. The parameters are read-only and are local variablesin the
subroutine. These variables must be defined explicitly within the
subroutine.

QG RLOCK Sets the default lock type for concurrent operations for un-nested
PROCESS CASE and CASE | S statements that do not explicitly specify
locks. Nested CASE blocks inherit the lock type of the outer CASE block.
The default lock typeis exclusive (Cl RLOCK = 6). (See Accessing the

Database.)
CRVWARN | Causes awarning message for any variable that is created implicitly.
NOCRWARN The default iS NOCRWARN,
DEBUG Stores information needed for the VisualPQL Debuggers with the

compiled code. Thisincludes the text of the program, pointers from the
compiled code to the text line and the variable name table.

The debug information is stored as a member subroutine with a default
name of SYSTEM DEBUG: O. Thisinformation can be stored el sewhere

by specifying a member name on the DEBUG clause:
DEBUG [=nenber nane]

ENDVSG | The default ENDVBG specifiesthat an' END ASSUMED warning message

NOENDMVEG isissued for any implicit 'end of block' conditions. (See Block
Structures.) NOENDVSG keyword suppresses warning message. You are
advised NOT to specify NOENDVSG, as it can mask other problemsin
your program.

EXECUTE | The default is EXECUTE, the routine begins execution when compilation

NOEXECUTE

is completed. NOEXECUTE compiles but does not execute the routine.
GET L oads and executes the executable member. Additional Visual POL

SIR/XS

LI BRARY

LCADI NG

LCADVAP

LCOCK

M SSCHAR

NOARRAYMSG

NOAUTOCASE

Visual PQL 39

procedures can be specified for executable routines. For Example:
RETRI EVAL GET = WEEKLY. SALES
REPORT FI LENAME = ' SALES. REP' /
PRI NT = NAVE REG ON NUMSBALES TOTSALES
END REPORT

Specifies alist of families that are searched when loading subroutines
when the family name is not specified. The search for subroutines with
unspecified family names beginsin the default directory and proceeds
through the list in the specified order. If the named member existsin
more than one family, the first one found is used. For example:

RETRI EVAL LI BRARY=(STATSUBS PRNTSUBS TESTSUBS)

Specifies the loading factor used during a database update. The number
is a percentage, expressed as a decimal number (e.g., .15 is 15%).

Specifies that a description (map) of routines loaded prior to execution
is produced.

Defines the lock value for both CIR and records for concurrent
operations. Use in place of defining both CI RLOCK and RECLOCK when
these have the same value.

Specifies the character used when printing missing values. The default
isasterisk (*). For example, to specify that a question mark is printed
when the value of avariable is missing.

RETRI EVAL M SSCHAR = ?

To specify that ablank is used, specify:

RETRIEVAL M SSCHAR =/

Note: that the slash is necessary here to indicate a blank.

Suppresses the output of warning messages normally produced at
compile time by references to array subscripts that do not correspond
to the array definition. Specify when using REDEFI NE ARRAY and
references are expected that do not match the initial definition.

In RETRI EVAL routines, this suppresses the generation of a PROCESS
CASE command. If thisis not specified, a PROCESS CASE is generated
before the first executable command in the retrieval. If another case
block isfound later, the automatic one isremoved. The compiler
interprets all commands between the automatic PROCESS CASE and the
first real case block asif they happened inside a case block.
NOAUTOCASE suppresses generation of an automatic PROCESS CASE
command in aretrieval.

NOAUTOCASE in a subroutine, allows arecord block without a CASE
block. If thisis specified and the subroutine is not called from within a
CASE block, execution of a RECORD block causes an execution error and
the program terminates. Any referencesto variables are treated as if
they arein a CASE block.

See Accessing the Database.

SIR/XS

NCDATABASE

PROGRESS

RECLOCK

RETURNI NG (
list)

SAVE

PROCS |
NCOPRCCS

PUBLI C

REPLACE

Visual PQL 40

When compiling a subroutine, the compiler assumes that the database
is accessed and the subroutine is referenced from aRETRI EVAL. The
NODATABASE keyword specifies subroutines that may be used by a
PROGRAM

When aretrieval is running, gives avisual indication of progress so far
through the database. The system keeps track of progress by any
PROCESS command. It takes the total number of cases or record type
and increments a percentage as appropriate. This means that the
displayed percentage may fluctuate when these commands are nested
but a general indication of progress still applies.

Sets the default lock type for PROCESS REC and RECORD | S statements
that do not explicitly specify locks for concurrent operations. The
default record lock is exclusive (RECLOCK = 6).

A SUBROUTI NE can return values to the EXECUTE SUBROUTI NE
command. At the time the subroutine returns control, these output
variables are mapped positionally to the RETURNI NG (list) variables
on the EXECUTE SUBROUTI NE command. These variables must be
defined explicitly within the subroutine and cannot be the same
variables input to the subroutine.

Saves an executable (compiled) version of the program as a member.
Using stored executabl es saves the overhead of repeated compilations.
The member saved with this keyword is given a".E', for 'executabl €,

suffix. For example:
RETRI EVAL SAVE = WEEKLY. SALES: E

Used with SAVE. PROCS s the default and specifies that any procedures
(e.g. REPORT, SAS SAVE FI LE, etc.) are saved along with the
executable program. SI R SAVE FI LE and WRI TE RECORDS procedures
cannot be saved.

NOPROCS specifies that the procedure specifications are not saved as
part of the stored executable. This allows you to save an executable
version of aprogram that builds a procedure table and to specify the
procedures at run time. See the GET option. The following example
stores an executable retrieval without the procedures.

RETRI EVAL SAVE = WEEKLY. SALES: E NOPROCS NCEXECUTE

Used with SAVE. Specifies that anyone may execute the saved
member, but only those with family or member passwords may alter it.
The following example saves an executable program as a member

protected with passwords and makes it publicly available.
PROGRAM SAVE = APPLI ¢/ MOON. MENUSYS: E/ STARS PUBLI C

Used with SAVE and with SUBROUTI NES (that are saved by default).

Specifies that the member being saved replaces a member of the same

nameif it exists.
PROGRAM SAVE = WEEKLY. SALES: E REPLACE

SIR/XS

SEED

SHOMM SS

STATIC |
DYNAM C

SUMFI LE

TABFI LE
TUPDATE

UPDATE

Visual PQL 41

SEED defines the seed value used by the random number generator for
any sampling done by procedures, for any sampling done by PROCESS
CASE or PROCESS Rowcommands that do not specify a seed and for the
RAND function if this does not reset the seed.

Thisvalueis not saved on any saved executable. If you wishto use a
non-standard seed, specify it on the command you use to execute the
saved program or retrieval.

The random number generator isinitialised at the start of the execution
and any sampling that generates acall or callsto it by the RAND
function proceed through a set sequence of ‘random' numbers
depending on the seed. If the seed is reset, subsequent callsto the
generator proceed through the new sequence of numbers.

SHOWM SS specifiesthat a variable's original missing values are used
when printing missing values. The default is asterisk (*) or the
character specified by MISSCHAR.

STATI Cisthe default subroutine loading mode. If static, then
subroutines are loaded when the main routine is first executed and
remain in memory. If local variables are altered in a statically loaded
subroutine, the values are preserved from one invocation to the next.
DYNAM C specifies that subroutines are loaded each time they are
executed and are unloaded when their execution completes.

Note that this keyword applies to the default subroutine loading mode
of the main routine. This can be overridden by the EXECUTE

SUBROUTI NE command. Specifying STATIC | DYNAM Cona
subroutine compilation does nothing.

Specifies the file where any database and tabfile update logs are
written. (Specify UPSTAT to produce update logs.) If SUMFI LE is not
specified, any update logs are written to the standard output. SUVFI LE
affects only the update logs, other output is not affected.

Specifies the default tabfile used on any SAVE TABLE procedures.

Specifies tabfiles opened in WRI TE mode for update by the program. If
this parameter is specified without any tabfile names, all referenced
tabfiles are available for write (update). If specific tabfiles are listed,
only those tabfiles are made available for update and any tabfile not in
thislist is opened asread only.

Specifies that the database is attached for write (update). This keyword
must be used to add, modify or delete from the default database. If the

routine uses multiple databases, the DATABASE | S command specifies

the update status for each database.

UPDATE can be specified for a subroutine. This enables the creation of a

SIR/XS

UPSTAT

NOTUPDLOG

NOUPDLOG

VARMAP |
NOVARMAP

Visual PQL 42

self-contained RETRI EVAL UPDATE component.

Specifies that an update log is produced for database or tabfiles that are
updated. NOUPSTAT is the default.

Suppresses the tabfile part of the update log produced when UPSTAT is
specified.

Suppresses the database part of the update log produced when UPSTAT
is specified.

VARMAP specifies that the program variables are listed after
compilation. The listing includes the routine name (main, subroutine or
variable block name), variable names and data type.

Proc Var indicates that this variable isincluded in a summary table
(see PERFORM PRCCS).

The VARMAP listing indicates variables explicitly declared before the
first executable command. These variables are not affected by the
AUTOSET command.

NOVARMAP specifiesthat the listing is not produced and is the default.

SIR/XS Visual PQL 43

END

END RETRI EVAL |
END PROGRAM |
END SUBROUTI NE

Indicates the end of a particular routine. These commands are synonyms so it is not
strictly necessary to match the routine type and the type of END command, although it is
good practice.

If theisn't an explicit END command, the end of aroutine isindicated by the end of the
input source or an END TASK or anew task indicated by a TASK NAME command or the
start of another retrieval, program or subroutine.

SIR/XS Visual PQL 44

EXECUTE DBMS

EXECUTE DBMS string_exp

Suspends execution of this program and executes the specified SIR/XS command. This
may call sets of commands and execute other programs or retrievals. When the input has
finished processing, control is returned to this program at the following command.

Cannot be used inside a block that is accessing a database or tabfile e.g. a CASE, RECORD
or Rowblock but can be used in a PQL Forms screen.

EXECUTE DBMS ' RUN MYPROGS. REPORT!

COVPUTE COMSTR = ' RUN MYPROGS. REPORT'
EXECUTE DBMS COMSTR

FBUTTON ACTI ON (EXECUTE DBMS ' RUN MYPROGS. REPORT')
PROVPT ' Run Report'

SIR/XS Visual PQL 45

EXECUTE SUBROUTINE

EXECUTE SUBROUTI NE { nenber _name | nmem nanme_exp_i n_brackets }
[(Iist of expressions)]
[RETURNING (list of variables)]
[STATIC | DYNAM C]

Executes the specified previously compiled subroutine, loading it if necessary. Specify
either the explicit subroutine name or the name of avariable in square brackets that

contains the subroutine name, for example:
EXECUTE SUBROUTI NE [SUBNAME]

Specify an optional list of values to pass to the subroutine. Thislist may contain constants
and expressions including variables. Variables referenced in this list must be defined in
the calling routine. While individua array elements may be referenced and passed in this
manner, awhole array cannot be passed to a subroutine. To pass awhole array, declareit
as an external variable.

A subroutine may be executed at any point within another routine. Recursive executions
are allowed and each copy maintains separate local subroutine variables.

RETURNI NG The variables specified on the RETURNI NG clause are updated on return
from the subroutine.

STATIC | In the default STATI C mode, the subroutine is loaded into memory

DYNAM C

either when the calling routine is loaded or, if the subroutine nameis
specified with an expression, when the EXECUTE SUBROUTI NE isfirst
executed. The subroutine remains in memory until the program ends.
Subroutine specific variables maintain their values from one invocation
of the subroutine to the next, i.e. the variables are not automatically re-
initialised with each execution of the subroutine.

In DYNAM C mode the subroutine is |oaded each time the EXECUTE
SUBROUTI NE is executed and unloaded when the RETURN statement is
executed, releasing the memory used by the subroutine. If a subroutine
is called dynamically, any subroutine called from withinitisaso
dynamic unlessit has previously been loaded statically.

SIR/XS Visual PQL 46

PERFORM PROCS

PERFORM PROCS

The PERFORM PROCS command builds a set of data for the Visual PQL Procedures. A
VisualPQL program that specifies one or more Visual PQL Procedures consists of two
parts. Thefirst part of the program retrieves data and putsit into the Procedure Table
using the PERFORM PROCS command. The second part consists of the procedure
specifications and executes after the first part has completed. Each procedure specifies
how the data in the procedure table is outpui.

The procedure contains a set of data records. Each record in the table is made up of the
procedure variables and contains a value for each variable. By default, the procedure
variables are all the program variables in the main routine. The procedure variables can
be specified with the DEFI NE PROCEDURE VARI ABLES command.

Each time a PERFORM PROCS command is executed a record with the current values of the
procedure variables is added to the procedure table. A PERFORM PROCS command can
appear in both the main routine and in subroutines. If aVisualPQL Procedureis specified
and the PERFORM PROCS command is omitted from the main routine, a compilation error
occurs.

SIR/XS Visual PQL a7

PQL ESCAPE

PQL ESCAPE string_exp [WAIT numexp] [MNMSElMN MZE num exp]
[RETURNI NG num var]

Stops execution of this program and creates a sub-process that executes the operating
system command specified in the string expression. The string expression is required and
must immediately follow the command.

Specify thewal T keyword followed by a numeric expression to control waiting for the
sub-process to complete. If the expression is missing or resolves to a positive value,
Visual PQL processing waits for the sub-process to complete; if the expression resolves to
zero or anegative value, the Visua PQL processing continues without waiting.

Specify the keyword M NI M SE (optionally M NI M zE) followed by a numeric expression
to control visibility of the sub-process. If the expression resolves to a positive value, the
sub-process runs minimised; If the expression is missing or resolves to zero or a negative
value, the sub-process runs visibly. Note that if the sub-process is minimised and waits
for completion, the SIR window is not refreshed until processing continues.

Specify the RETURNI NG keyword followed by a numeric variable name to get areturn
code. If the sub-process runs without waiting, zero is returned; if the sub-process failsto
start, -1 is returned. Otherwise the termination status of the sub-processis returned
(normally zero equates to success).

By default (no keywords), the command runs visibly and waits for the sub-process to
compl ete before returning.

SIR/XS Visual PQL

PQL EXIT DBMS

PQ. EXIT DBMS
Terminates the SIR/XS session. Use this command to exit completely without requiring
further action from the user.

48

SIR/XS Visual PQL 49

RETURN

RETURN [NLEVELS n | TO subrouti ne_nane]

Exits the current subroutine and is only allowed within a subroutine. Execution control is
passed to the first statement following the EXECUTE SUBROUTI NE command that called
the current subroutine.

If execution reaches the end of the subroutine, control is returned automatically.

If NLEVELS is specified, the return goes back through n levels of sub-routine calls; if TO is
specified the return goes back to the named subroutine. War ning: Using either the
NLEVELS or TO options means that the subroutine is not independent and relies on
knowledge asto how it is called and so these are not recommended practices.

SIR/XS Visual PQL 50

Variables

Visual PQL allows you to declare variables and define their characteristics; assign values
to variables; create and use an External Variable block to pass data to subroutines; define
the data passed to any VisualPQL Procedures.

Variables for use within aroutine are referred to as program, local or summary
variables as opposed to database, table or external variables.

Local variables can be explicitly defined with specific data declaration commands. If a
command assigns a value to an undeclared variable, the variable isimplicitly defined.
Arrays can be defined and referenced using subscripts.

The VARVAP option prints alist of program variables.

Every variable has a name and a datatype. Variables may have extended definitions such
as value labels and missing values.

All of the definitions that can be given to database variables in schema definition may be
given to variablesin routines. The extended variable definitions can be explicitly defined
or copied from the dictionary schema with the GET VARS command.

Variable declarations and extended definitions typically appear at the beginning of a
routine. The declaration of avariable must precede any extended variable definition
commands. Variable definitions must precede any reference to the variable whether the
declaration isimplicit or explicit. The code that defines the variable must physically
precede the lines of code that reference the variable. Only define variablesin
subprocedures if the variable is only referenced in the subprocedure.

SIR/XS Visual PQL 51

Explicit Variable Declarations
Variables are defined explicitly with commands.
Simple Variables

There are five types of ssimple local variables, DATE, | NTEGER, REAL, STRING, TI ME.

The type can be followed by alength and aformat for date and time. For example:
| NTEGER*1 gender

REAL*8 total totall

STRI NG*25 nane

DATE curdate (' DD MM YYYY'")

Extended Variable Definitions

Each variable may contain extended definitions for data validation and for default labels.
The extended definitions include:

VALUE LABELS that defines descriptive labels for individual values of avariable.

VAR LABEL that defines a 78 character label for the variable that can be used in place of
the variable name.

M SSI NG VALUES that defines specific values that are treated as missing in computations
and statistical procedures.

VALI D VALUES and VAR RANGES that defines values or ranges of values that are valid for
thisvariable.

SCALED VARS that defines a scaling factor for an integer variable. The scaling factor isa
power of ten, negative values specify decimal places, positive values specify tens,
hundreds, etc.

SIR/XS Visual PQL 52

VariableLists

Specify alist of variables with the TO keyword and use the same method to reference
the variable. The order of local variables is determined by the order they are declared in
the program. The order of database variablesis determined by the order they are defined
in the schema. Typically, programs declare variables whose names indicate a position
within the list but thisis not necessary. For example

I NTEGER*1 VAR1 TO VARI1O
SET VARL TO VAR10(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Variables can be referenced in aTolist format. A TOlist specifies a beginning and ending
variable. The following example declares seven variables and assigns a value to NAME,
ADDRESS, CITY, STATE and COUNTRY. REG ONand zI PCODE are not affected by the SET
command because they are not part of the implied list of variables.

STRING*25 REQ ON NAME ADDRESS
STRING*10 CI TY STATE COUNTRY ZI PCODE
SET NAME TO COUNTRY (' Unknown')

Anindividual variable can be referenced by specifying an index value after the TOlist
that specifies the position of the variable in the list. Specify the index value immediate
following the TOlist specification, enclosed in parentheses. For example:

| NTEGER*1 NUMA NUMB NUMC NUNVD | declare variabl es
SET NUMA TO NUMD (11, 12, 13, 14) | assign values to variables
COVPUTE NUMX = NUMA TO NUMDX(3) | put 3rd var into NUMX

Variable list references may appear anywhere an expression may appear. The index value
may be any numeric expression, including variable names, array references and more
complex expressions. For example:

COVPUTE NUMA TO NUMD(3) = 32
| FCNUMA TO NUMX(3) EQ 32) WRITE 'O K.'

Note: The variable reference is resolved and the variable moved to atemporary string or
numeric variable before further computations are done. This means that variables such as
categorical, date and time variables always return their numeric value when referenced in
aTolist.

SIR/XS Visual PQL 53

Arrays

An array isaset of variables all of the same type. It has one or more dimensions that
define the number of variablesin the array. Thereis no internal limit to the number of
dimensions nor the number of variablesin any dimension, though the machine must be
able to refer to enough memory for the array. Y ou must explicitly declare arrays before
use in another command. The general syntax to declare arraysis:

type [* size] ARRAY array_list (dinmension [,...]) [(format)]

type Variabletype: | NTEGER, REAL, STRING DATE Or TI ME

si ze Size of the integer, real or string variables.

ARRAY Keyword specifying that arrays are being declared

array |ist A list of the names of the arrays. Do not use VisualPQL function

names. Do not use names of other variables referenced in the routine.

di mensi on The number of occurrencesin adimension. Y ou can specify a
dimension either as a single number that is the number of entriesin the
array with references starting at 1, or as a start and finish pair of
references separated by a colon ;' where the number of entriesisthe
difference between these values plus 1. The number of entries must be
apositive integer. e.g.

| NTEGER*4 ARRAY nont ht ot (12)
| NTEGER*4 ARRAY yeartot (1990:2009)

Y ou can declare arrays for any of the basic data types. Following is the syntax for each
data type:

INTEGER [* {1 | 2 | 4}] ARRAY nane_list (dinmension [,..
STRING [* numle_254] ARRAY nane_list (dinension [,...
[l
[l

REAL [* {4] 81}] ARRAY nane_list (dinmension

DATE ARRAY nane_list (dinmension ('date
format')

TI ME ARRAY nare_list (dimension [,...]) ('time
format')

Some commands, such as SET and PRESET, can operate on whole arrays, in which case
reference the array by name plus an asterisk *. The extended variable commands refer to
whole arrays. Most other commands operate on individual array elements.

SIR/XS Visual PQL 54

Reference array elements by the array name and the element location within the array in
parentheses, commonly called the array subscript. The subscript may be a numeric
expression or constant. Specify avalue for each dimension: e.g.

COVPUTE MONTHTOT(12) = TOTAL
COMPUTE TOTAL = MONTHTOT(MONTH)
COMPUTE JANO1 = DAILYTOT(1, 1)

COMPUTE DEC31 = DAI LYTOT(12, 31)

REDEFINE ARRAY

REDEFI NE ARRAY array_name_exp (dinl, dinR,...)

The REDEFI NE ARRAY command alters the dimensions of alocally defined array; arrays
defined in EXTERNAL VARI ABLE blocks cannot be redefined. The number of dimensions
can be atered as well as the value of any dimension. The array can grow or shrink and
existing values are mapped to the new dimensions. Any new values are set to missing.

Note that the array name is an expression, that is a string variable, expression or constant.
To specify the name of the array to be redefined directly, ssmply enclose the name in
guotation marks.

The VisualPQL compiler checks array subscript references where possible and warns if
these do not match the array definition. If arrays are redefined, this checking may result
in unwanted warnings. These can be suppressed with the NOARRAYMSG option. For
example:

PROGRAM NOARRAYMSG
| NTEGER*4 ARRAY NUML (50)

FOR |1 = 1,50
COVPUTE NUML (1) =1
ROF
WRI TE "Before redefine"
WRITE ' NUML (1) (50) Should be 1 50 " NUML(1) NUML(50)

REDEFI NE ARRAY ' NUML' (50, 2)

WRI TE "After redefine of NUML to (50,2)"

WRITE "NUML (1,1) (50,1) Should be 1 50 ' NUML(1,1) NUML(50, 1)
WRITE "NUML (1,2) (50,2) Should be * * ' NUML(1,2) NUML(50, 2)
END PROGRAM

SORT

SORT array_nane
[BY key_array_var nane]

[(n)]
[DESCENDI NG

SIR/XS Visual PQL 55

The SORT command sorts the entriesin an array. By default, all entries are sorted
according to their values into ascending sequence. Multiple dimensions are sequenced as
asingle extended dimension e.g. If an array has two dimensions then entry (1,1) isfirst,
(2,1) is second through to (n,1) that is followed by (1,2) etc. Note that the names of arrays
specified in this command are specified directly, they are not expressions.

BY One array can be sorted according to the valuesin a second array.

key_array_varname Tpga qugtem matches the two arrays positionally and then sorts the
original array according to the valuesin the named key array. If the
arrays are different in size, the smaller value is used.

(n) The sort can be restricted to the first N entries.
DESCENDI NG The sort can be into descending sequence.

SIR/XS Visual PQL 56

Implicit Variables

Variables are implicitly defined in VisualPQL in two ways:
Declaration by Assignment

If avaueisassigned to avariable that does not exist, the variableis created. The data
type of the new variable is taken from the context in which it is used. For example,

assuming variable B aready exists, the following implicitly defines variable A:
COWPUTE A = B

Numeric variables are declared as REAL* 8. String variables are STRI NG*w where w isthe
current value of STRI NG LENGTH - default 32. Assigning dates and times creates numeric
variables. Variables defined by assignment have no definitions other than the variable
name, type and length.

The CRWARN option on the routine definition command issues a warning message during
compilation whenever avariable is created by assignment.

GET VARS

The GET VARS command implicitly declares new program variables copying the type and
format, value labels and missing values from the schema definition of a database or table
variable. GET VARS can copy individual variables or can use the keyword ALL that
implicitly declares new program variables for all variables from a given record or table.
A routine may access record variables directly in an appropriate block structure or may
copy the datainto an internal variable for further processing. For example:

PROCESS REC EMPLOYEE
GET VARS NAME

This creates a new implicit program variable NAVE. This program variable is available
outside the PROCESS REC block. The GET VARS command can copy database or table
variables into explicitly defined local variables, in which case the definition of the
variable is not affected.

SIR/XS Visual PQL 57

CAT VARS

CAT VARS varnane ('value') varname ('value')

Specifies string variables that are held as categorical integers and defines the set of string
values that can be held for the variable. The variables must first be explicitly defined as
string variables and these cannot be arrays.

Thevauesin the value list are each enclosed in single quote marks (') and the list for a
variableis enclosed in parentheses. Specifications for multiple variables may be
separated with aslash (/) for readability.

Internally, categorical variables are held asintegers that are the position of the string in
the value list. The variable may be treated either as a string or as a number depending on
context. If the categorical variable is assigned to an undeclared variable, a numeric
variableis created. If it iswritten without a format specification, the string is written. For
example:

program var nap
string*l strl str2

cat vars strl ('a','b','c")
conpute strl ="'"a'

conpute x = strl

conpute str2 = strl

wite strl str2 x

end program

Variable list for Main Program

Vari abl e Name Proc Type
STR1 Y Cl*3
STR2 Y S*1
AUTCSET Vari abl es
X Y R*8
Start program execution
aal

End program execution

SIR/XS Visual PQL 58

CONTROL VARS

CONTROL VARS varli st

Declaresalist of variables or arrays that are Control variables for the TABULATE
procedure.

The variables and arrays named on the command must be numeric and must have a VAR
RANGES defined.

By default, variables that have VALI D VALUES or VALUE LABELS are automatically
control variables.

All other numeric variables are observation variables, that is variables with continuous
values.

PROGRAM

| NTEGER*2 varl

VAR RANGES var1 (1, 30)
CONTROL VARS var1l
PERFORM PROCS

TABULATE varl

SIR/XS Visual PQL 59

DATE

DATE varlist ('date format') [...]

Date variables are four byte integers. Dates are held as the number of days between the
date and the start of the Gregorian calendar where October 15, 1582 is day 1. Dates can
be represented as formatted strings and translated according to the date format.

When a date is assigned to another variable either the integer value or the equivalent
formatted value is moved. If the assigned variable is numeric or undefined, the integer
valueis assigned. If the assigned variable is a string variable, the formatted string value is

assigned.

The date format defines the default format. That is the format that is expected on input, is
written on output and is assigned to string variables. See date formats for a complete
description.

Caution

When comparing dates and strings remember that the date is converted to a string using
its default format then compared with the string. For example (assuming the date format
for birthday iSDDI MM YYYY):

|F (BIRTHDAY It '01 01 2007') SET AGEGROUP (2)
Thisisacomparison of strings does not classify dates correctly as any date string that has
days of the month greater than 1 (i.e'02 mm yyyy") is greater than the string ‘01 01 2007".

If the date format for birthday is YYYY! Mv DD then:

| F (BIRTHDAY It "2007/01/31") SET AGEGROUP (2)

This conpares strings like '2007 12 31' with '2007/01/31'. Again this
gives rise to errors because the forner is less than the | ater because
the character ' '(blank) has a | ower ASCI| value to the sl ash

It is recommended that all date conparisons and processing are done
with the nuneric val ues:

| F (Bl RTHDAY |t CDATE(' 2007/01/31',' YYYY/ MM DD)) SET AGEGROUP (2)

For example, the following program declares and uses date variables. The program
expects a string such as 'Jan 30, 2007" asinput for BI RTHDAY and a string like '01-30-07'
for vi SDATE. The input strings '01 30, 2007' and 'JA/30/07" are also valid. Note that on

SIR/XS Visual PQL

output, the default separator characters are spaces not slashes or dashes. Use the format
options on the write to output other characters.

PROGRAM
DATE Bl RTHDAY (' MVM DDii YYYY') /
VI SI TDAT (' MM DDi YY')

COWPUTE BI RTHDAY = 'Feb 26, 1970

COVPUTE VI SI TDAT = ' 07/ 13/ 05’

VWRI TE ' Born on ' Bl RTHDAY (' WWwW DD/ MW YYYY')
"and visited on ' VI SITDAT (' DD/ MM YYYY')

END PROGRAM

TheM, D and Y strings cannot be split. The following is not allowed:

DATE BI RTHDAY (' Yi MM Y')

60

SIR/XS Visual PQL 61

INTEGER
INTEGER [* { 1| 2| 4}] varlist

The | NTEGER command declares the listed variables as integers. Optionally specify the
size of thevariablesas 1, 2 or 4 byte integers. If asize is not specified, the variables are 4
byte integers.

| NTEGER* 1 has values from -128 to 123
| NTEGER* 2 has values from -32,768 to 32,763
| NTEGER* 4 has values from -2,147,483,648 to 2,147,483,643

Example:

PROGRAM
| NTEGER*1 SCORE1 TO SCORE5 SEX

| NTEGER* 2 MONTHSAL

| NTEGER* 4 YEARSAL

SET SCORE1 TO SCORE5 (0)

SET SEX (1)

SET MONTHSAL (2500)

COVPUTE YEARSAL = MONTHSAL * 12

WRI TE MONTHSAL (' 99, 999') 2X YEARSAL (' 999, 999')
END PROGRAM

SIR/XS Visual PQL 62

MISSING VALUES

M SSI NG VALUES varlist (value [,value [,value]l]) [/...]

M SSI NG VALUES specifies up to three values for a variable that are treated as missing.
Missing values are excluded from statistical procedures and functions. A missing value
is, by definition, avalid value for the variable and need not be re-specified.

The missing values can be constants or the keyword BLANK. If BLANK is hot amissing
value for anumeric variable, then blanks are stored as O (zero).

Missing values can be specified for string variables. Missing values for string, date and
time variables are specified as strings. If the specified missing value matches the leftmost
input characters, missing values are recorded.

Missing values can be specified for an array. Specify the array name in the command, not
specific array elements.

For example, the following declares several variables and defines missing values for
them. If the date 01/01/01 is assigned to TESTDATE, the value is treated as missing. If
either ablank or the letters ZZ are assigned to STATE, they are considered missing. For the
numeric array and numeric variables, the value 9 is treated as missing. If blanks are input
with a READ command, they are treated as missing.

DATE TESTDATE (' MM DDi YY')

STRING'2 STATE

I NTEGER*1 ARRAY QUESTI ON (25)

| NTEGER* 1 MATHTEST READTEST

M SSI NG VALUES STATE (BLANK ,'ZZ') /
QUESTI ON MATHTEST READTEST (BLANK , 9) /
TESTDATE (' 01/01/01")

SIR/XS Visual PQL 63

OBSERVATION VARS
OBSERVATI ON VARS var | i st
Specifies variables and arrays that the TABULATE procedure use as Observation Variables.

By default, variables that have Valid Values or Value Labels are Control Variables.
OBSERVATI ON VARS changes these to Observation Variables.

SIR/XS Visual PQL

REAL
REAL [* { 4| 8}] varlist

The REAL command declares the listed variables as double precision, real, floating point
numbers. REAL* 4 (single precision) and REAL* 8 (double precision) are also allowed.

When assigning a value to real variables, integers can be used without a decimal point.

64

SIR/XS Visual PQL 65

SCALED VARS

SCALED VARS var nane (n)

SCALED declares the integer variables are scaled to power n. N is a positive or negative
number representing the power of ten to which the variable is scaled.

If the variable has not been defined previoudly, this defines an | NTEGER* 4 variable. To
create a different length integer, define the variable before declaring the scaling factor.
The full, unscaled number, including any decimal point, is used wherever this number is
referenced.

SIR/XS Visual PQL 66

STRING

STRING [* nunber] varli st

STRI NG declares the listed variables as string of maximum length number. The maximum
length of astring variable is 4094. If alength is not specified, the default is the current
setting of STRI NG LENGTH, that by default is thirty two characters. If more characters than
the declared string length are assigned to a variable, the string is truncated to the declared
length.

SIR/XS Visual PQL 67

TIME

TIME varlist ("tinme format') [...]

Time variables are four byte integers. Times are held as the number of seconds between
the time and the previous midnight. Times can be represented as formatted strings and
trandated according to the time format.

When atime is assigned to another variable either the integer value or the equivalent
formatted value is moved. If the assigned variable is numeric or undefined, the integer
valueis assigned. If the assigned variable is a string variable, the formatted string value is
assigned.

The time format defines the default format. That is the format that is expected on input, is
written on output and is assigned to string variables. See time formats for a complete
description.

Caution

When comparing times and strings remember that the time is converted to a string using
its default format then compared with the string.

e.g. (assuming the time format for START isHH M\):

| F (START gt '09:00') SET LATE (1)

isacomparison of strings and the string '09 59' is less than the string '09:00' because the
character ' '(blank) has alower ASCII value to the colon.

In these casesiit is best to convert the string to a number for the comparison:
| F (START gt CTI ME(' 09: 00',' HH: MM)) SET LATE (1)

H A number of hours greater than 24 or minutes/seconds greater than 60
sets the variable to undefined. If hours, minutes or seconds are not
input, they default to zero.

The following program declares and uses time variables:

PROGRAM
TI ME STARTI ME ENDTI ME (' HH MM)
COWPUTE STARTI ME = SREAD(' Enter Starting Time (HH MY ')
COWPUTE ENDTI ME = SREAD(' Enter Quitting Time (HHMVY")
COWPUTE TTI ME = ENDTI ME - STARTI ME
WRI TE ' You worked ' TTIME(TIME ' HH)
hours and ' TTIME(TIME "MM) ' minutes.'
END PROGRAM

SIR/XS Visual PQL

VALID VALUES

VALI D VALUES varlist (value_list) [...]

Specifies the set of specific valid values a numeric variable can assume. If both VAR
RANGES and VALI D VALUES are defined for avariable, both specifications must be
satisfied. Attempting to store avaluein the variable that is not either avalid Missing
Value or aValid Vaue results in undefined. When a variable is updated during the
running of a program, data validation takes place in the following order:

1. Missing Values
2. VdidValues
3. Variable Ranges

Examples:

I NTEGER * 1 VARL TO VAR5 SCOREA SCOREB SCOREC
VALI D VALUES VAR1 TO VAR5 (1, 2) 1/
SCOREA TO SCOREC (1, 2, 3, 88, 99)

68

SIR/XS Visual PQL 69

VALUE LABELS

VALUE LABELS varlist (valuel) 'label text'
[(value2) 'label text_2' [...]]
(-]

Defines descriptive labels for individual values of avariable. Each label may be up to 78
characters long. Enclose labels in quotes. The keywords UNDEFI NED and BLANK can be
used as values and assign labels to undefined or blank missing values.

Specify value labels for multiple values of asingle variable as one continuous command.
If anumber of variables have the same value labels, you can specify alist of variables,
followed by the values and labels. If specifying value labels for an array, specify the
array name not individual array elements. Y ou can specify value labels for severd
variables on the same command.

For example, to declare a string variable, an integer variable and a 25 element array and
define value labels for each:

PROGRAM

STRI NG*3 STATE

I NTEGER*1 REG ON

| NTEGER*1 ARRAY QUESTI ON (25)
VALUE LABELS QUESTION (1) 'Yes'

(2) 'No
REGON (1) '"North'
(2) ' South'
(3) 'East’
(4) 'West'

STATE (' NSW) ' New Sout h Wl es'

(" QLD) ' Queensl and
(*MIC) "Victoria'

SET STATE REG ON (' NSW, 1)

SET QUESTI ON * (1)

COWPUTE STATEV VALLAB(STATE)

COVWPUTE REG ONV = VALLAB(REG ON)

COWPUTE QUESTV VALLAB(QUESTI ON(1))

VWRI TE STATEV REA ONV QUESTV

END PROGRAM

SIR/XS Visual PQL 70

VAR LABEL

VAR LABEL {variable | array } 'var |abel text'

VAR LABEL specifies adescriptive label for avariable. A variable label may be up to 78
charactersin length and may be enclosed in quotes. Labels for multiple variables may be
specified on a single command. The variable label can be retrieved during program
execution with the VARLAB function.

Several VisualPQL Procedures automatically use avariable label if oneis defined.

Examples:

STRI NG*3 STATE

| NTEGER*1 REG ON

| NTEGER*1 ARRAY QUESTI ON (25)

VAR LABEL STATE 'State of Residence'
REG ON ' Region of the State'
QUESTI ON ' Survey Question'

SIR/XS Visual PQL 71

VAR RANGES
VAR RANGES {variable | array } (mn_value , max_value) [/ . . .]

Specifies the range of values that a variable can have. Input values outside the specified
range are set to undefined. If specific VALI D VALUES are defined for avariable, do not
specify VAR RANGES. If both are specified, the value must satisfy both specifications.
When avariable is updated during the running of a Visual PQL program, data validation
takes place in the following order:

1. Missing Values
2. Vdid Values
3. Variable Ranges

Examples:

| NTEGER*1 YRSEDUC YRSWORK YRSPLAY
I NTEGER*4 | NCOVE
DATE LASTDATE (' MM DDi YY')
VAR RANGES YRSEDUC TO YRSPLAY (0,99) /
I NCOVE (10000 , 90000) /
LASTDATE ('01/01/2004' , '12/31/2005")

SIR/XS Visual PQL 72

Assigning Values

Values assigned to variables are specified as expressions. A variable may also be
undefined or have a missing value. The commands that assign values explicitly to
variables are:

AUTCOSET resetsimplicitly defined local variables to undefined. It istypically used to
ensure that values from a GET VARS in a RECORD/ Rowblock are not carried forward
accidentally when the block is not executed due to a non-occurrence of that record for
this particular instance. It also resets any variable explicitly declared after the start of the
routine (the first executable command). It resets the values each time the command is
executed.

COVPUTE sets avariable to a specified constant or expression value.

EVALUATE compiles small VisualPQL expressions during execution, allowing programs to
accept expressions 'on the fly'.

GET VARS copies the definition and the value of a database or table variable to alocal
variable.

PRESET setsthe initial value of variables at compilation time. Pre-compiled subroutines
and stored executable programs save any preset values as part of the executable image
that is loaded and executed at run time.

PUT VARS writeslocal data back into table or record variables.

SET sets variables to given constant values at execution time. It resets the values each
time the command is executed.

RECODE recodes the value of avariableinto itself or another variable.

The initial values of program variables are set to undefined unless PRESET is specified.

SIR/XS Visual PQL 73

Missing Values

Until avariable has been assigned areal value, its value is undefined, which is a system
assigned missing value.

Some specific values of avariable may be treated as missing. A variable SEX might have
valid value of 1 and 2 for Male and Female, and a value 3, for Unknown, that is treated as
missing.

There are functions and procedures to get and use the actual value of the variable. In
general, operations that result from evaluating a missing or undefined value yield an
undefined value (e.g. adding a number to an undefined value yields an undefined value).
Functions that calculate statistics on a set of values ignore undefined values.

The numeric value 0 (zero) isanormal numeric value and is different from undefined. A
zero length string (a string with no characters) is aso avalid value that is different from
an undefined string.

Logical tests evaluate to true or false. When specifying logical tests remember that a
missing value or undefined in alogical test always evaluates to false.

SIR/XS Visual PQL 74

EXpressions
Expressions evaluate to a single value. For example:

COVWUTE REG ON = 'Western ' + ' Canada'
COMPUTE TOTAL = 10 + 17

Expressions have two main elements; other expressions and operators. Operators are a
symbol that specifies an operation between two expressions. Parentheses () may be used
to specify the precedence (order) of operations.

Simple expressions are:

Variables
String and Numeric Constants
Functions

Variables

Variables have names and during program execution contain avalue. A referenceto a
variable resolves itself to the value held by the variable. In general, wherever avariable
may be referenced a subscripted array reference may be used.

String Constants

String constants are expressed as characters enclosed in quotation marks (either the single
or the double quotation mark). If one type of quotation mark is used to start a string, the
same type of quotation mark finishes the string. For example, in the EVALUATE command
it is possible to specify a string inside another string by using both types of quotation
mark:

EVALUATE X = 'NUMBR ("20")' + ' + 22'
Numeric Constants
Numeric constants are numbers. A numeric constant may contain:

anumber

one decimal character (the period)

aleading plus or minus sign (the + or -)

atrailing letter E to indicate exponentiation followed by a number (that may be
signed)

Following are valid examples of the SET command using several forms of expressing
numeric constants.

SIR/XS Visual PQL 75

SET TESTNUMB (22)
SET TESTNUMB (+3. 1)
SET TESTNUMB (- 3. 1)
SET TESTNUMB (4. 5E-2)

Functions

Functions are named routines that perform an operation based on values passed to the
function and return a single value. Functions are specified with a function name followed
by alist of values enclosed in parentheses. The values passed to functions may be
constants, variables, functions and expressions. There are around 360 functions that
perform various operations including string manipulation, mathematical calculations,
statistics, setting and getting information from dialogs and getting information about a
database or tabfile.

Operators
String Operators

Thereis one string operator, the concatenation operator, represented by the + sign. String
concatenation appends one string value expression to another. Operationsin string
expressions are left to right. When string values are computed into avariable, if the string
islonger than the declared length of the variable the result is truncated. Concatenating
undefined or missing values result in an undefined value. For example:

PROGRAM
STRI NG*40 ADDRESS
I NTEGER ZI PCODE

COWUTE C TY = ' Chi cago'

COVPUTE STATE = 'Illinois’

COVPUTE ZI PCODE = 60614

COVPUTE ADDRESS = CITY + ', ' + STATE + ' ' + FORMAT(ZI PCODE)

VRl TE ADDRESS
END PROGRAM

In this example, ADDRESS is computed from three types of simple value expressions,
string constants in quotes, variable names and the FORVAT function that converts a
number to a string.

Arithmetic Operators
There are five arithmetic operators:
+ the plus sign performs addition
- the minus sign performs subtraction

* the asterisk performs multiplication
!/ the dlash performs division

SIR/XS Visual PQL 76

** the double asterisk performs exponentiation, a number raised to a power. A
number raised to areciprocal power yields the root

Enclose signed constants that follow an arithmetic operator in parentheses. For example:

COWUTE NUML = 10 + 20 + 33

COWPUTE NUM2 = 100 - NuUML

COWPUTE NUM2 = NUML * 5

COWUTE NUML = 2 / 3

COWPUTE NUML = 4**3 | 4 cubed
COVPUTE NUM2 = NUML**(1/3) | cube root

COVPUTE NUM = 13 * (-2)

In arithmetic expressions, operations of equal precedence are done from left to right. The
precedence of operationsis.

expressions within parentheses
functions

exponentiation

multiplication and division
addition and subtraction

agkrowdpE

An arithmetic operation that involves an undefined or missing value returns an undefined
value. A number divided by zero yields an undefined value.

Examples:

COWUTE NUM = 6 + 3 / 3 | NUMis 7

COWPUTE NUM= (6 + 3) / 3 | NUMis 3

COVWPUTE NUM = 16**1 / 2 | NUMis 8, 16 divided by 2
I

COVPUTE NUM = 16**(1/ 2)
M SSI NG VALUES NUM (1)

NUMis 4, square root of 16

COWUTE NUM = 1 | NUM is missing
COVPUTE NUM2 = NUM + 3 | NUM2 is undefined
COMPUTE NUM3 =1/ O | NUMB is undefined

SIR/XS Visual PQL 77

Database Variables

Commands outside a case, record or row block only access local variables. Within a
block, acommand can access case or record variablesin addition to all local variables.
The GET VARS and PUT VARS commands access case, record or row variables
specificaly.

Itispossible, even likely, that alocal variable has the same name as avariablein the
record. When aretrieval references one of these variables in a case or record block,
Visual PQL determines which variable is used.

In arow block, the GET VARS and PUT VARS commands access Rowvariables
directly. All other commands access local variables.

In acase block, acommand has access to common variables. The common
variable is used rather than alocal variable of the same name.

In arecord block, a command has access to all record variables. In acase
structured database, a command has access to both common and record variables.
A common or record variable is used rather than alocal variable of the same
name.

Thelocal variable is always used outside case and record blocks.

Assigning avalue to adatabase variable isonly alowed if thisisaretrieval update. If a
valueis assigned to a database variable, the database is updated when the record or case
block is exited.

For example, the first program updates the salary on every employee record as well as
listing the records. (Without the RETRI EVAL UPDATE command, this would not compile).
The second program does not update the database, it ssmply produces alist of new
salaries.

RETRI EVAL UPDATE

PROCESS REC EMPLOYEE
COVPUTE SALARY = SALARY* 1.1
VWRI TE NAME SALARY

END PROCESS REC

END RETRI EVAL

RETRI EVAL
PROCESS REC EMPLOYEE
GET VARS NEWBALARY = SALARY
COVPUTE NEWSALARY = NEWSALARY * 1.1
. V\RI TE NAME NEWSALARY
END PROCESS REC
END RETRI EVAL

SIR/XS Visual PQL 78

AUTOSET

AUTCSET [varlist (value_list)]

AUTOSET sets all implicitly declared variables and any variables not declared before the
first executable command. An executable command is any command except variable
declaration, variable definition and PRESET commands. AUTCSET is typically used to
initialise local implicitly defined variables defined with GET VARS. AUTOSET sets
variables to UNDEFI NED unless avariable list and value list is specified. If such alistis
specified, all AUTOSET variables are set to undefined and then the listed variables are set
to the values specified in the parenthesised value list. If fewer values are specified than
variables, the value list is cycled through as many times as needed to assign avalue to
each of the variablesin the list.

In the following retrieval, AUTOSET is used to make sure that values from a previous
record type 3 record aren't accidentally carried over to another case if that case happens
not to have arecord type 3 record.

RETRI EVAL
PROCESS CASES | for every case
AUTOSET | initialise variables

PROCESS REC 1 | step thru rectype 1 recs
GET VARS ALL | nove all vars to summary rec
PROCESS REC 3 REVERSE | step thru rectype 3, backwards
I
I

CET VARS ALL move all vars to summary rec

EXIT REC we only want this one, get out

END REC

PERFORM PROCS | copy summary rec to summary table
. END REC
END CASE
SAS SAVE FI LE FILENAME = 'SAS. SYS' | create SAS file
VARI ABLES = ALL

END RETRI EVAL

SIR/XS Visual PQL 79

COMPUTE

COWPUTE var nane = expression

Assigns the value determined by the expressions to avariable or array element. COVPUTE
cannot be used to set awhole array. (Use SET)

The computed variable may be alocal variable, an array element or a database variable.

The data type of the computed variable or array element must be compatible with the
type implied by the expression. Y ou must declare arrays before use with COVPUTE. If the
computed variable has not been declared, an implicit local variableis created as either a
string or real number, depending on the type implied by the computation expression.

SIR/XS Visual PQL 80

EVALUATE

EVALUATE varnanme = string_expression

The EVALUATE command compiles and then evaluates a VisualPQL expression during
program execution. The expression that is evaluated is re-compiled and re-evaluated
every timethat it is traversed that is an expensive process to perform at run time. Thisis
typically used when auser is asked to type in some condition at execution time.

If the expression is alogical expression, the command returns a0 (zero) or al (one)
depending on whether the expression istrue or false. If the expression is anumeric
calculation, the result is returned. If the expression is a string operation, the result isa
string. The left hand side variable determines the type expected from the right hand side
expression. If thisvariableis not explicitly declared, it isimplicitly declared asreal.

Thefollowing retrieval allows the user to specify a condition for retrieving records.

RETRI EVAL
LOOP
COVMPUTE EXPRESS = SREAD(' Enter search condition (CRto quit)')
I F (LEN(TRI M EXPRESS)) = 0) STOP
PROCESS CASES
PROCESS REC 1
EVALUATE TRUE = EXPRESS
IF (TRUE) WRITE | D NAME TO CURRDATE
END REC
. END CASE
END LOOP
END RETRI EVAL

The expression to the right of the equal sign isastring expression and therefore enclosed
in quotes. The syntax of the command may also require a string expression enclosed in
guotes. Use a mixture of single and double quote marks. Each matching pair denotes a
string. For example:

EVALUATE X = "NUMBR ("20")' + ' + 22

This passes avalid VisualPQL expression NUMBR ("20") + 22 tothe compiler that then
produces theresult 42 in X.

SIR/XS Visual PQL 81

GET VARS

GET VARS transfers values of database or table variablesto local variables. If the
referenced local variables are not explicitly declared, this command implicitly declares
them with all the schema definitions of the database or table variables, including Data
Type, Vaue Labels, Missing Values, Valid Vaues and Ranges. The command is only
allowed inside a case, record or table block. It takes three forms:

GET VARS Thevaluesof local variables are assigned the values of the database or
local _var_li st g5l variables. The two lists must be of equal length and the value
= db_var _|i st . . .

assignments are performed listwise.

GET VARS Thereis an assumed left hand side list of local variables with the same
db_varli st names as the database or table variable list.

GET VARS ALL The keyword ALL specifies all record or table variables are assigned to
local variables of the same name.

PREFI X | SUFFI X The keywords PREFI X and SUFFI X followed by text in quotes, specify
text text to append to the record or table variable namesto create local
variables with modified names. The text is used exactly as specified so
ensure the correct case (upper/lower) is used. If the modified name
exceeds to maximum length for names (32 characters), awarning is
printed and the unmodified name is used.

Thisisthe only command that accesses table variables for input.

For example: the GET VARS command is used three times to retrieve database and table
data and copy it into local variables.

RETRI EVAL
PROCESS CASES ALL
GET VARS I D
PROCESS RECORD EMPLOYEE

GET VARS NAME GENDER PREFI X ' EMPLOYEE_'

PROCESS ROWNS OCCTAB | NDEXED BY OCClI NDEX VIA (ID)
GET VARS POS START = CURRENT_POSI TI ON START_DATE
PERFORM PRCCS

END PROCESS ROWG

END PROCESS REC
END PROCESS CASE
REPORT FI LENAME = TEST. LIS
PRI NT = ALL
END RETRI EVAL

SIR/XS Visual PQL 82

PRESET
PRESET varlist (value_list)

Assigns constants to variables and array elements during compilation. PRESET statements
must precede the first executable command within aroutine. PRESET may also be used in
an EXTERNAL VARI ABLE BLOCK. The preset values are the initial values when program
execution begins. The syntax isidentical to the SET command. PRESET happens once at
compilation; SET happens during execution whenever the SET is encountered.

Vauesinthevauelist are assigned in list order to the variablesin the variable list. If the
value list is shorter than the variable list, the value list is cycled until a value has been
assigned to each variable. If the value list is longer than the variable list, the excess
values are ignored.

Value Keywordsfor Undefined Values

The value list may contain value constants and the keywords M SSI NG, NM SSI NG and
SM SSI NG. NM SSI NG assigns a numeric undefined value, SM SSI NG assigns a string
undefined value and M SSI NG assigns the appropriate type of undefined value depending
on the type of the variable being set. If M SSI NGis specified for an undeclared variable, it
isimplicitly declared as REAL.

Repeat Values
A shorthand syntax for repeating a value is the asterisk symbol. The syntax is:
PRESET varlist (repeat_value * value [value_list])

In the following example, the first four variables are set to 2, the next three are set to 12
and the last three are set to 7,8 and 9 respectively.

PRESET VARL TO VARLO (4*2,3*12,7,8,9)
Setting Array Elements

Specific array elements may be preset. All elementsin an array may be preset by
specifying the array name followed by an asterisk. Vauesin the value list are assigned
column wise by dimension. For example:

| NTEGER*1 ARRAY A (3, 2) | declare two dimensional array A
PRESET A * (0) | preset all elements to O
PRESET A * (1,2,3,4,5,6) | set each elenment to unique val ue

SIR/XS Visual PQL

PRESET A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)
(1,2,3,4,5,6) | Equival ent to previous conmand

83

SIR/XS Visual PQL 84

PUT VARS

PUT VARS transfers values of local variablesinto database or table variables. This
command must be used to update the values in table variables, whereas database
variables are automatically updated by assignment within arecord or case block. PUT
VARS takes three forms:

PUT VARS The values of the database or table variables are assigned the values
ng;iar il:aft | i:st currently held by the local variables on the right side of the equals sign.
- The lists of variables must be of equal length. The value assignments
are performed list wise; the first right side value is assigned to the first
left hand variable, the second right to the second | eft, and so forth.

PUT VARS Thereis an assumed right side list that isidentical to the database or
db_varli st table variable list. The referenced database or table variables must have
the same name as local variables.

Note that the PUT VARS takes local variables as the source and sets
database variables to be the same as the local variables. Asthese have
the same name, there is an opportunity for confusion if the variable
values were set inside the database block. e.g.

PROCESS REC EMPLOYEE

GET VARS SALARY

COWPUTE SALARY = SALARY * 1.1
PUT VARS SALARY

END PROCESS REC

Because thisisin arecord processing block, the database variable
SALARY is updated by the compute, not the local variable with the same
name. Then the PUT VARS would restore the original value of salary
because that is the current value in the local variable. If database
variables are updated inside a record block, the PUT VARS is

unnecessary.

PUT VARS ALL Any record or table variables with the same names as local variables
are updated.

Values of keyfields in records may not be updated. Values of keyfields of the index being
used on table rows may not be updated.

For example: The program retrieves data from the database and creates a new row on a
table, if one does not already exist for that employee in that position. The two forms of
PUT VARS are used, one to move alocal variable to arow variable of the same name, the

SIR/XS Visual PQL 85

other to set arow variable of adifferent name. Note that the index variables are set by the
reference on the ROW | S and are not referenced by aPUT VARS.

RETRI EVAL TUPDATE
PROCESS CASES ALL
GET VARS I D
PROCESS RECORD EMPLOYEE
GET VARS NAME CURRPCS SALARY CURRDATE
NEW ROW | S OCCTAB | NDEXED BY OCCI NDEX (1D, CURRPOS)
PUT VARS START_DATE = CURRDATE
PUT VARS SALARY
END ROWI S
END PROCESS REC
END PROCESS CASE
END RETRI EVAL

SIR/XS Visual PQL 86

RECODE

RECODE [update_var =] recode_var
[(value_list = recode_value) [...]]

The RECODE command computes a val ue according to the specifications and assigns the
value to a named variable. The computed value may be re-assigned to the original
variable or assigned to a different variable leaving the original value unchanged.

The valuesin the value list and the recode value are either constants or one of the value
keywords documented below. (Expressions and variable names are not allowed as
values.)

recode The variable or array element with the initial value to recode. If an

variable update variable is not specified, this variable is updated with the
recoded value.

updat gl The variable or array element to receive the recoded value if the

varil abl e

original recode variable is not updated. The update variable must be a
data type compatible with the recode value.

recode value Thevaluesinthevaluelist are converted to this single value. This
value must be the same type as the update variable. Specify the
keyword UNDEFI NED to recode values to undefined.

val ue |ist Specify thelist of original values to recode. Specify avalue list for
each single recode value. Any value in the list is recoded into the
single recode value. If the value of the variable is not found in avalue
list, the value is not recoded and is assigned unaltered to the update
variable. Specify a separate parenthesised recode value list for each
recode value. In the following examples: In thefirst, if RVARIis1, 2 or
3, UVAR isrecoded to 0. If RVAR has any other value, RVAR is
copied to UVAR. In the second example, UVAR isOif RVARIis1, 2
or3and 1 (one) if RVARIis4,50r6:

RECODE UVAR
RECODE UVAR

RVAR(1, 2, 3
RVAR(1, 2, 3

0)
0)(4,5,6 = 1)

Y ou may use a number of keywords in the value list.

THRU Specifies an inclusive range of values. For example:

SIR/XS Visual PQL 87

RECODE UVAR = RVAR (1 THRU 3 = 0)(4 THRU 6 = 1)

The value lists can overlap avoiding the possibility that a value (such
as 3.5) falls between two value lists and is not recoded. The first match
determines the recode used. Multiple ranges and multiple values can be

specified in avaue list. For example:
RECODE UVAR = RVAR

(1 THRU 3,7 THRU 99 = 0)(3 THRU 7 = 1)

LOVNEST, LO Specifies the lowest possible value. For example:
RECODE UWAR = RVAR (LO THRU 3 = 0)(3 THRU 6 = 1)
HI GHEST, HI Specifies the highest possible value. For example:
RECODE WAR = RVAR (LOTHRU 3 = 0)(3 THRU H = 1)
UNDEFI NED Specifies an undefined value. For example:
RECODE UVAR = RVAR (UNDEFI NED, LO THRU 3 = 0)(3 THRU 6 =
1)

UNDEFI NED may also be used as the recode value. For example:
RECODE UVAR = RVAR (LO THRU 3 = 0) (3 THRU HI = UNDEFI NED)

M SSI N&(0) Specifies missing values. M SSI NG 0) isasynonym for UNDEFI NED.
m gg: @ 3 M SSI NG 1) refersto the first missing value, M SSI NG 2) to the
M SSI NE 3) second, and M SSI N& 3) to the third. For example:

PROGRAM

| NTEGER*1 RVAR
M SSI NG VALUES RVAR (7, 8, 9)
SET RVAR (9)
RECODE UVAR = RVAR

(M SSI N& 1) =4)

(M SSI N& 2) =5)

(M SSI N& 3) =6)
WRITE UVAR
END PROGRAM

BLANK Specifies that the blank missing value is recoded. For example:
RECODE UVAR = RVAR (BLANK, 7 THRU HI = 0)

ELSE Specifies arecode for al values not included in any previously defined
valuelist. If ELSE is specified, no other values may be specified in the
value list. This must be the last recode specification of a set. For

example:
RECODE UVAR = RVAR (1,2,3 = 1)(4,5,6 = 2)(ELSE = 0)

Mixed Data Type Recodes

A variable of one type may be recoded into a variable of another type. In the following
example, astring variable is recoded into a numeric variable.

PROGRAM
I NTEGER*1 NUWAR

STRING'1 STRVAR

SET STRVAR (' A')

RECODE NUWAR = STRVAR(' A = 1)('B' = 2)(ELSE = 0)
WRITE STRVAR NUWAR

SIR/XS Visual PQL

END PROGRAM

If the recode variable in a mixed data type recode has a value not referenced in arecode
value list, the update variable is set to undefined.

88

SIR/XS Visual PQL 89

SET

SET varlist (value_list) ...

Assigns explicit values to variables and array elements during execution. Vauesin the
valuelist are assigned in list order to the variablesin the variable list. If the valuelist is
shorter than the variable list, VisualPQL cycles through the value list until a value has
been assigned to each variable. If the value list islonger than the variable list, the excess
values are ignored.

Value Keywordsfor Undefined Values

The value list may contain value constants and the keywords BLANK M SSI NG NM SSI NG
SM SSI NG. BLANK assigns blanks to a variable. This can be used to assign a blank missing
value to anumeric variable. NM SSI NG assigns a numeric undefined value, SM SSI NG
assigns a string undefined value and M SSI NG assigns the appropriate type of undefined
value depending on the type of the variable being set. If M SSI NG is specified for an
undeclared variable, it isimplicitly declared as type REAL.

Repeat Values
The asterisk isa symbol for repeating avaue. The syntax is:
SET varlist (repeat_value * value [value_list])

In the following example, the first four variables are set to 2, the next three are set to 12
and the last three are set to 7,8 and 9 respectively.

SET VARL TO VARLO (4*2,3*12,7,8,9)
Setting Array Elements
Specific array elements may be included in the variable list. All elementsin an array may

be set by specifying the array name followed by the asterisk. Valuesin the valuelist are
assigned column wise by dimension. For example:

PROGRAM

| NTECER*1 ARRAY A (3,2) | declare two dinensional array A
SET A* (0) | set all elements to O

SET A* (1,2,3,4,5,6) | set each elenent to unique val ue
WRI TE A(1, 1)

END PROGRAM

The second SET statement in the above example is equivaent to:

SIR/XS Visual PQL

SET A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A3,2 (1,234,5,6)

90

SIR/XS Visual PQL 91

EXTERNAL VARIABLE BLOCK

EXTERNAL VARI ABLE BLOCK menber[: V]
[NOSAVE | [REPLACE] [PUBLIC] [VARVAP]

vari able definitions ...

END EXTERNAL VARI ABLE BLOCK

AN EXTERNAL VARI ABLE BLOCK declares a set of variables and arrays that may be shared
between routines. The external variable block contains variable declarations and
definitions and the PRESET command. No other commands are allowed in an external
variable block. The block is ended with the END EXTERNAL VARI ABLE BLOCK command.

The external variable block is compiled separately (by running it) and is stored in its
compiled form in the specified member. This member is given the :V (for Variables)
suffix. This set of variablesis made available to routines by specifying the | NCLUDE
EXTERNAL VARI ABLE BLOCK command within aroutine.

The external variable block provides a common data area that can be used by a

Visual PQL program and its subroutines as an aternative to passing val ues between
subroutines with argument lists on the EXECUTE SUBROUTI NE command. External
variables that are updated in one routine are available to all other routines that include the
external variable block during VisuaPQL execution.

member The member name of the compiled variable definitions. It is given the
'V (for Variables) suffix if not specified. The member name can
contain complete procfile, family and password specifications.

NGSAVE Compiles the external variable block without saving it, simply
checking the code for errors.

REPLACE Gives permission to overwrite an existing member of the same name.
If such amember does not exist, the option has no effect.

PUBLI C Makes the compiled external variable block available to all users

without need for passwords. These users may reference the member,
but not modify or deleteit.

VARNVAP Lists the variables and their data types.

SIR/XS Visual PQL 92

INCLUDE EXTERNAL VARIABLE BLOCK

| NCLUDE EXTERNAL VARI ABLE BLOCK menber|[: V]

Includes the variables as local variables in the routine. Do not declare variables from the
included block in the routine that includes the block.

member Names a member with the :V suffix that is a previously compiled and
stored set of variable declarations.

Use this command anywhere that variable declaration or definition commands are legal
(except within another EXTERNAL VARI ABLE BLOCK). External variables that are updated
in one routine are accessible in other routines that have included the block. External
variables provide an alternative mechanism to passing values on the EXECUTE

SUBROUTI NE command.

SIR/XS Visual PQL 93

DEFINE PROCEDURE VARIABLES

DEFI NE PROCEDURE VARI ABLES [{ INCLUDE | EXCLUDE } (varlist)]
[NOARRAYS | ARRAYS]
[NOEXTERNALS | EXTERNALS |
(external _block_list)]]
[NOGsSI MPLE | SIMPLE]

Controls the variables that are copied to the Procedure Table with the PERFORM PROCS
command. If this command is not used, by default all local ssmple variables from the
main routine are passed to the Procedure Table; arrays and external variables are not. If
arrays or external variables are needed for the procedures, this command must be used.
The options on the command are:

| NCLUDE Specifies alist of variablesincluded in the Procedure Table. Thislist
may include simple program variable names, array names and external
variable names. These variables must be available in the main program
or retrieval.

EXCLUDE Specifies alist of variables and arrays that are excluded from the
Procedure Table. All main routine program variables, external
variables and arrays not mentioned in this list become part of the

Procedure Table.
ARRAYS | Specifiesthat al arrays declared in the main routine are included in the
NOARRAYS Procedure Table. NOARRAYS is the defaullt.
EXTERNALS | Specifiesthat any external variables included with the | NCLUDE
NOEXTERNALS

EXTERNAL VARI ABLE BLOCK command in the main program or
retrieval are included in the Procedure Table. Y ou may specify the
external variable blocksto include, in which case all variablesin other,
unspecified external variable blocks are excluded from the Procedure
Table. NOEXTERNALS is the default.

SIMPLE | Specifiesthat all simple variables (not arrays, not external variables)

NCSI MPLE explicitly or implicitly declared in the main program or retrieval are
included in the Procedure Table. NosI MPLE excludes all ssmple
variables from the Procedure Table. SI MPLE is the default.

SIR/XS Visual PQL 94

Control Flow

There are anumber of commands that deal with the flow of control within a program
depending on particular logical conditions.

Thesimple 1 F,I FNOT commandstest alogical condition and execute one or more
commands immediately if the condition is satisfied.

The JuvP command transfers control to a specific point in the program identified by a
statement label.

Subprocedures are parts of aroutine that can be executed from any point within that
routine, returning control to the next statement. Subprocedures are defined at the end of
the routine and share data with the routine.

Blocks

The major control structures are blocks and other commands occur in blocks that are
treated as a unit. Blocks are defined by commands that specify the type of block and are
bounded by an END command. Block structures are used for all database and table access.

Blocks consist of acommand that starts the block and an end command that ends the
block (e.g. LOOP / END LOOP). Blocks may be nested within other blocks and an inner
block must be completely within an outer block. Blocks may not overlap. The block
structures are:

AFTER

A block of commands executed after all other processing. (Thereisno END AFTER; this
block is delimited by the end of the program or retrieval.)

BEG N
A block of commands executed at this point.

FOR
A block of commands executed a specified number of times.

| FTHEN
A block of commands executed when a condition istrue. | FNOTTHEN is avariant that
executes the block when a condition is false.

CASE | S, RECORD | Sand ROW | S.
These blocks relate to one occurrence of a particular database record or row. Specify the

SIR/XS Visual PQL 95

key to identify the record on the command. The commands have variants using the
keywords NEwand OLD. These specify that the block is only executed if the record
created/already exists.

The JOURNAL RECORD | S creates a block that processes data from ajournal entry that
matches the specified record type. This can only be used inside a PROCESS JOURNAL
block.

LOoP
A block of commands executed repeatedly until specifically ended (typically by anEXI T
LOOP).

PROCESS CASE, PROCESS RECORD and PROCESS ROW

A block of commands executed once for each occurrence of arecord in a database or row
inatable.

PROCESS JOURNAL specifies ablock of commands that are executed once for each
occurrence of matching records on a database journal.

UNTI L
A block of commands executed until a specified condition is met.

WHI LE
A block of commands executed as long as a specified condition is met.

The EXI T and NEXT commands further control processing within the block. EXI T passes
control to the first command after the end of the block; NEXT goes to the next iteration of
alooping block.

SIR/XS Visual PQL 96

L ogical Conditions

A logical condition can be composed of a number of elements. The basic element isa
logical expression that uses a Relational Operator to specify a comparison between two
values. This returns either true or false. The values must be of the same type, either string
or numeric. Constants, variables, functions and expressions using arithmetic, functions
and other computations may be compared. When expressions are compared, all string and
arithmetic operations are completed before the relational operations. When strings are
compared, they are case sensitive (upper or lower) and tests for greater than/less than use
the standard sort sequence: 'B' is greater than 'A’ and 'BOY' is greater than 'BOX'. The
relational operators are:

EQ or = True when values are equal .
NE or >< True when values are not equal.
Gl or > True when thefirst value is greater than the second value.

GE or >= or True when first value is greater than or equal to the second value.
=>

LT or < True when the first value is less than the second value.

LE or <= or True when first valueisless than or equal to the second value.
=<

Thelogical condition can also contain the NOT operator:

NOT NOT operates on alogical expression and negates itslogical value. A
true (non-zero, non-missing) expression is made false and afase
expression is made true. NOT operates on the expression that follows up
through the next relational operator or the next un-matched right
parenthesis. NOT is evaluated and resolved after the entire expression to
which it applies has been resolved and before other logical operators at

the same level of nesting are evaluated. For example:
IF(NOT 1 GT 2) WRITE ' TRUE

SIR/XS Visual PQL 97

Compound Conditions

Compound conditions test two logical expressions and resolve to either true or false. The
relationship between the two expressions is specified using the logical operators:

AND Intersection. True if both expressions are true.
OR Inclusive Union. True if either expression istrue.
XOR Exclusive Union. True if one but not both expressions are true.

These logical expressions resolve to either true or false. For example,

IF(1 LT 2 AND 'A" LT 'B') WRITE 'Both statenents are true'
Compound L ogical Operations on the same variable.

When the same variable is repeatedly tested for different values, the variable name (and
test if that repeats) do not have to be repeated. For example:

IF(IDEQ1 OR 3 OR 12 OR 16) VWRITE I D

The phrase'ID EQ' is assumed to follow each 'OR' making this equivalent to:

IF(IDEQ1 ORIDEQ3 ORIDEQ 12 ORID EQ 16) WRITE ID

The following two statements are equivalent:

ID GT 10) WRITE ' TRUE'

IF (IDEQ1
IF (IDEQ1 GTI 10) VWRI TE ' TRUE'

33

g

The following two statements are also equivalent:

IF (ID EQ A B AND NOT C) VRI TE ' TRUE'
IF (ID EQA E

ID EQ B AND NOT ID EQ C) WRITE ' TRUE

3%

Precedence

Parentheses may be used to establish precedence, in which case more deeply nested
operations are resolved earlier. Within any expression, the various elements are resolved
in the order listed below. Elements at an equal level of precedence are resolved left to
right.

SIR/XS Visual PQL 98

parenthesi sed expressions

functions

string concatenation

exponentiation (**)

multiplication and division (* and /)
addition and subtraction (+ and -)

relational operators EQ, NE, GT, GE, LT, LE
logical operator NOT

compound logical operators AND, OR, XOR

CoNOOr~WNE

Logical Values

Expressions that contain relational or logical operators resolve into true or false logical
values equivalent to a 1 (one) or a0 (zero). It isvalid to compute a numeric variable to
hold the result of alogical expression and to use logical expressions as argumentsin
functions such as SUM.

| F commands can directly test expressions that resolve to numeric values. Zero tests to
false, missing teststo false and all other valuestest to true. In the following example,
LOG CVAR contains the value O (zero) if the value of A does not equal the value of B, or 1
if it does:

COWPUTE LOG CVAR = (A EQ B)
IF (LOE CVAR) WRI TE ' TRUE'

Because of the simple syntax for multiple tests on asingle variable, compound conditions
on logical variables must be specified with care. Consider the following two statements,

IF (LOGVARL AND ACE GTI 21) WRI TE ' TRUE'
IF (AGE GT 21 AND LOGVARL) WRI TE ' TRUE'

Thefirst statement test LOGVARL to be 1 (true) and AGE greater than 21. However the
second statement is expanded to:

IF (AGE GT 21 AND AGE GI LOGVAR1) WRITE ' TRUE

SIR/XS Visual PQL 99

IF, IFNOT

I F (logical expression) comrmand(s)
| FNOT (| ogical expression) conmmand(s)

| F executes the specified command or commands when the logical expression istrue.
When the logical expression isfalse, program execution continues with the next
executable command. | FNOT executes the specified command or commands when the
logical expression isfalse. When the logical expression istrue, program execution
continues with the next executable command.

Any VisualPQL command may be specified as the executable result of an| F/ | FNOT
except:

other logical test commands
data definition commands
block definition commands
compiler commands

Separate multiple commands with semi-colons (;). For example:

(1 EQ 1) SET X(1); WRITE ' OK
(X EQ 1) SET X(0);
WRITE ' OK 2';
EXI T RETRI EVAL
PROCESS REC EMPLOYEE
| FNOT(SALARY GE 2000) NEXT REC
. VR TE NAME SALARY
END REC

The example goes to the next record when salary is not greater than or equal to 2000 and
also when salary is missing (because the expression is treated as false).

SIR/XS Visual PQL 100

JUMP

JUMP statenent | abel
JUWP (statenent |abel , statenent label, ...) variable

JUWP transfers control to the point in the program identified by the specified statement
label. Execution continues serialy from that point. It is possible to jump to a statement
label or to fall through to it from the normal flow of control. A JuvP command must be at
an equal or higher level of nesting and within the same nested set as the statement label
that it references. JuwP can jump out of a block, but not into the middle of a more deeply
nested block. JuMP can not jump out of or into a SUBROUTI NE Or SUBPROCEDURE.

Specify a statement labels as the first element on aline. A statement label isaname
followed by acolon (:). When referenced in the JuvP command, do not specify the colon.
If you need to use a non-standard name (enclosed in curly brackets{}) asalabel in PQL,
there is a possible conflict with the syntax for command labels used to control command
processing. Avoid this conflict by indenting the label and specifying afull stop in column
1.

Thefirst form of JuvP specifies a single statement label and transfers control to the
command after the label.

The second form of the command, the computed JUWP, transfers control to the nth label in
aspecified list of labels, where the numeric variable contains the value N.

SIR/XS Visual PQL 101

AFTER

AFTER PROGRAMOr AFTER RETRI EVAL

Specifies a block of commands executed when the program or retrieval is complete. The
block istypically used to print report ending information and for actions that are taken
just before ending the program.

Table, case or record processing commands are not alowed. Reference may not be made
to any datain the database or table files. Local variables are available for output.

This command is typically used with the Full Report Procedure.

AFTER PROGRAMISsidentical to AFTER RETRI EVAL, except that it is used in programs
rather than retrievals.

SIR/XS Visual PQL 102

BEGIN

BEGA N

Specifies the beginning of ablock of commands. The commandsin aBEG N block are
executed when control reaches this point.

END BEGQ N
Delimits the BEG N block.

EXIT BEG N
Transfers program control to the statement following the END BEG N command. It is
usually used conditionally to terminate processing of the block.

BEG N can be used to anywhere in a program to group a set of commands that have some
common purpose. For example, initialisation at the start of the program.

PROGRAM
BEG N
COWPUTE TOTAL = 0
. other initialisation conmands
END BEG N
PROCESS ROA5 SCHOOLS. STUDENTS
COWPUTE TOTAL = TOTAL + 1
. other commands performed for every row
END ROW
END PROGRAM

BEG Nis often used to create a better structure in a program with complex logical
conditions and to avoid the use of JUWP or very complex | FTHEN / ELSEI F constructs.
For example:

BEG N
IF (logical condition) EXIT BEG N
vi sual pgl code
IF (logical condition) EXIT BEG N
IF (logical condition) EXIT BEG N
. visual pgl code
END BEG N

SIR/XS Visual PQL 103

EXIT

EXIT [bl ocktype]

EXI T blocktype stops execution of the block at that point and transfers control to the first
command following the END blocktype command. An EXI T can be used in any block. If
the blocktype is specified, the command exits the innermost block of that type. If the
blocktype is not specified, the command exits the innermost block. It is good practice to
specify blocktype. An ExI T command may be specified in the following blocks:

EXIT BEG N Exits the current BEG N block.

EXIT CASE Exits the current case processing block.

EXIT FOR Exits the current FOR block.

EXIT I'F Exits the current | FTHEN or | FNOTTHEN block.
EXIT JOURNAL Exits the current JOURNAL RECORD | S block.
EXIT LOOP Exits the current LooP block.

%'LJ;\&EOCESS Exits the current PROCESS JOURNAL loop.
EEE&EROCESS Exits the current PROCESS RECORD |oop.
Eg/vT PROCESS Exits the current PROCESS Rowloop.

EXIT PROGRAM Terminates the PROGRAM after executing any commands in the AFTER
PROGRAMDlock. STOP isa synonym for EXI T PROGRAM

EXIT RECORD Exitsthe current record processing block.

EXI'T Terminates the RETRI EVAL after executing any commands in the AFTER
RETRI EVAL RETRI EVAL block. STOP isasynonym for EXI T RETRI EVAL.

EXIT ROW Exits the current row processing block.

EXI'T UNTIL Exits the current UNTI L block.

EXIT WH LE Exits the current WHI LE block.

SIR/XS Visual PQL 104

FOR

FOR control _var = startvalue, endvalue [,increnment]

The FOR command specifies the number of times the commandsin a FOR block are
executed. FOR assigns a new value to the control variable each time the block is repeated.

control _var The control variable must be a numeric variable and may not be an
array element. It isincremented by the value of increment during each
pass through the block. When the value of this variable exceeds the
endvalue, the block is exited and control is transferred to the first
statement following END FOR. If the control variable is not explicitly
declared, it is declared implicitly asaREAL* 8 local variable.

startval ue The control variableis set to this value when the block isfirst
executed. The value may be a program variable, array element
reference, expression or a numeric constant.

endval ue The end value determines the final pass through the FOR block. The
value may be a program variable, array element reference, expression
or anumeric constant.

i ncrenent The value by which the control variable isincremented during each
pass through the block. The value may be a program variable, array
element reference, expression or a numeric constant. The default
increment valueis 1 (one).

END FOR Delimits the FOR block.
EXIT FOR Terminates processing of the FOR block and transfers program control

to the first statement following END FOR. This command is usually
executed conditionally with an IF command or from within a
conditionally executed block of commands.

NEXT FOR Terminates processing of the current pass through the FOR block and
passes control to the start of the next FOR loop after incrementing and
checking the control variable.

The following sequence is executed in a FOR block:

The control variableis set equal to the starting value, all commands in the block
are executed, then the increment is added to the control variable.

If the control variable is greater than the end value or if the control variable
becomes a missing value, execution of the block is terminated. Otherwise the
block is executed again.

If either start value or end value is missing, the FOR block is skipped.

SIR/XS

Visual PQL 105

If the control variable is a database variable (the FOR block is within arecord or
case block), the database variable is updated on each pass through the block.
When the increment is positive, the FOR block is not performed when the start
valueislarger than the end value. When increment is negative the FOR block is
not performed when the start value is smaller than the end value.

SIR/XS Visual PQL 106

IFTHEN

| FTHEN (1 ogi cal _expressi on)
| FNOTTHEN (| ogi cal _expressi on)

The 1 FTHEN command defines a block of commands that are executed conditionally.

Initssimplest form, | FTHEN defines a block of commands that are executed when a
logical expressionistrue. An | FNOTTHEN block of commands is executed when the
logical expression isfalse. Any command may be included within an | FTHEN or

| FNOTTHEN block, including other complete blocks of commands and other logical test
commands.

Other conditional blocks within the condition, can be defined with the ELSE , ELSEI F,
and ELSEI FNOT commands. Each conditional block is terminated with another ELSEI F,
ELSE or the END | F. An | FTHEN block may contain multiple ELSEI F and ELSEI FNOT
blocks. It may only contain one ELSE block.

END I'F Delimits the | FTHEN block.

EXIT IF Directs the flow of the program to the statement following the END | F
of the block in which it appears.

ELSE Specifies ablock of commands that are executed when no other

commands are executed in the | FTHEN block. The block of commands
isdelimited by the END | F.

ELSEI F Specifies ablock of commands that are executed when the conditions

ELSEI FNOT specified on the | FTHEN and any other previous ELSEI F commands are
not satisfied and the condition specified on this command is satisfied.
The block of commands is delimited by a further ELSEI F, ELSE or the
END | F.

| FTHEN (| ogi cal expression)
conmands execut ed when above expression is TRUE
ELSEI F (| ogi cal expression)
conmands execut ed when above expression is TRUE
ELSEI FNOT (| ogi cal expression)
commands execut ed when above expression is FALSE
ELSE
. commands executed when no other bl ocks are executed
END I F

SIR/XS Visual PQL 107

LOOP

LooP

Loor repeatedly executes a block of commands. By definition, aLoopP block isan infinite
loop and a command such as EXI T or JUMP must be used to terminate looping. The
compiler does not check for the existence of these commands within a LooP.

END LOCP Dedlimits the Loor block.

EXIT LOOP Terminates looping, directing program execution to the statement
following the END LOOP. This command is frequently executed
conditionally, aswith an | F command, to terminate the looping.

NEXT LOOP Terminates processing of the current pass through the block and passes
control to the next iteration of the current LoOoP block (control is passed
to the statement following LooP).

SIR/XS Visual PQL 108

NEXT
NEXT [bl ocktype]

Some blocks (e.g. WHI LE) are looping structures and execute repeatedly until some
controlling condition is met. In looping blocks, the NEXT bl ockt ype command transfers
control to the first command in the block at the next iteration.

If the blocktype is specified, the command transfers control to the next iteration of the
innermost block of that type. If blocktype is not specified, control istransferred to the
next iteration of the innermost looping block. It is good practice to specify blocktype.
NEXT may be specified in the following looping blocks:

NEXT CASE Transfers control to the next iteration of PROCESS CASES if another
case exists.

NEXT FOR Transfers control to the next iteration of the FOR, if the end condition
specified on the FOR has not yet been reached.

NEXT LOOP Transfers control to the next iteration of the Loop.

NEXT REC Transfers control to the next iteration of PROCESS RECORDS if another
record exists.

NEXT ROW Transfers control to the next iteration of PROCESS ROWS if another row
exists.

NEXT UNTI L Transfers control to the next iteration of the UNTI L, if the end condition

specified on the UNTI L has not yet been reached.

NEXT WHI LE Transfers control to the next iteration of the wH LE, if the end condition
specified on the WHI LE has not yet been reached.

For example:

PROCESS REC EMPLOYEE
IF (GENDER = 1) NEXT PROCESS REC

END PROCESS REC

SIR/XS Visual PQL 109

UNTIL

UNTIL (I ogical expression)

UNTI L repeatedly executes a block of commands until the logical expression becomes
true. When the expression becomes true, the block is exited and program control is
transferred to the statement following the END UNTI L command.

The condition of the logical expression istested at the start of each pass through the
UNTI L block. If the condition isinitially true, the block is skipped entirely.

END UNTI L Delimitsthe UNTI L block

NEXT UNTI L Terminates the current pass through the block and transfers control to
the next iteration of the UNTI L command. This command is usually
executed conditionally, asthe result of alogical test (e.g. withthel F
command). This command may only be used within an UNTI L block.

EXI'T UNTIL Terminates processing of the UNTI L block and transfers program
control to the statement following the END UNTI L. Thiscommand is
usually executed conditionally, as the result of alogical test (e.g. with
the | F command). This command may only be used within an UNTI L
block.

SIR/XS Visual PQL 110

WAIT

VWAI' T num_exp

Pauses execution of this program for the specified number of tenths of a second.

PROCESS RECORD PATI ENT LOCK = 4 | get the patient record
LOOP
| F(SYSTEM'36) = 1) EXIT LOOP | exit if we get the record
VWRI TE 'Waiting for |ocked record

WAIT 5 | wait half a second
RETRY RECORD | try to get the record
END LOOP

END PROCESS RECORD

SIR/XS Visual PQL 111

WHILE

WHI LE (| ogi cal expression)

WH LE repeatedly executes a block of commands while the expression istrue. When the
expression becomes false, execution of the block is terminated and program control is
transferred to the statement following the END WHI LE. The condition of the expressionis
tested at the start of each pass through the WHI LE block. If the condition isinitially false,
the block is skipped entirely.

END VHI LE Delimits the WHI LE block
NEXT VWHI LE Terminates the processing of the current pass through the block and

passes control to the next iteration of the block. This command is
usually executed conditionally, as the result of alogical test (e.g. with
the | F command).

EXIT WHILE Terminates processing of the WHI LE block and transfers program
control to the statement following the END WHI LE. Thiscommand is
usually executed conditionally, as the result of alogical test (e.g. with
the | F command).

SIR/XS Visual PQL 112

SUBPROCEDURE
SUBPROCEDURE name [NOAUTCCASE]

A subprocedure is a named, structurally complete, block of commands that may be
executed from any point within aroutine with the EXECUTE SUBPROCEDURE command.
Subprocedure names must be unique within the routine. A subprocedure is compiled
with, and belongs to, the routine it is defined in. A subprocedure shares variables with the
routine and other subprocedures and has accessto all variables available to the routine in
which it is defined. Declare any variables used by the routine before they are referenced.
(i.e. do not declare new variables in the subprocedure that are referenced by the routine.)

Define subprocedures at the end of the routine ahead of any VisualPQL Procedures or an
AFTER RETRI EVAL block. Thereisan implicit STOP (or RETURNif the routineis a
subroutine) just before the first subprocedure.

The SUBPROCEDURE command begins a subprocedure definition. The subprocedure
definition ends with the END SUBPROCEDURE command.

If you define a subprocedure with the name RT_ERROR, this procedure is given control if
arun time error occurs. It is then this subprocedure's responsibility to take any
appropriate action necessary. If the subprocedure does not exit the routine, control is
passed back to the next command following the command that caused the run time error.

NOAUTOCASE Specifies that the subprocedure is called from within a CASE block,
allowing specification of aRECORD block within the subprocedure
and/or referencesto CIR variables. If the subprocedure is executed
outside a CASE block, the execution of a RECORD block causes an error
and the main routine terminates. Any references to variables with
names matching CIR variable names reference CIR variables. If the
subprocedure is executed outside a CASE block, referencesto CIR
variables return undefined val ues.

References to other variables in the subprocedure are to local variables,
unless within a RECORD block physically specified in the subprocedure
itself, even if the subprocedure is executed from within arecord block.
However, if the subprocedure is executed from within arecord block,
this alters the behaviour of certain Visual PQL functions that allow an
expression as avariable name, such as VARGET and VARPUT. Because
these functions resolve their variable references at execution time and
are checked against any CIR variables, then any active record variables
ahead of anv local variables. execution of these functions from within a

SIR/XS Visual PQL 113

record block references any matching record variable regardless as to
whether the functions are in a subprocedure.

END SUBPROCEDURE

END SUBPROCEDURE ends the block of subprocedure code. Control is passed back to the
first command following the EXECUTE SUBPROCEDURE command that invoked the
subprocedure.

EXI'T SUBPROCEDURE

EXI T SUBPROCEDURE exits the subprocedure and control is passed to the first statement
following the EXECUTE SUBPROCEDURE command that invoked the subprocedure.

SIR/XS Visual PQL

EXECUTE SUBPROCEDURE
EXECUTE SUBPROCEDURE nare

Transfers control to the first line of code in the named subprocedure. When the
subprocedure is exited, control returns to the first statement following the EXECUTE
SUBPROCEDURE. This command may appear anywhere in aroutine including within a
subprocedure.

Subprocedure Example:
PROGRAM
TI ME NOON NOAMI MVE (' HH MM) | declare tine variables
COVPUTE NOON = ' 12: 00’ | set the value of midday
COVPUTE NOWII ME = NOW 0) | get the current tine
| FTHEN (NOATI ME LT NOON)
EXECUTE SUBPROCEDURE MORNI NG | execute MORNI NG

ELSE
. EXECUTE SUBPROCEDURE AFTERN | execute AFTERN
ENDI F

SUBPROCEDURE MORNI NG

. VWRI TE ' Good Mbrni ng'
END SUBPROCEDURE
SUBPROCEDURE AFTERN

. WRI TE ' Good Afternoon'
END SUBPROCEDURE

END PROGRAM

114

SIR/XS Visual PQL 115

Reading and Writing Files
There are Visua PQL commands that read and write files.

Programs can read from and write to named files. These may be text or binary files and
output files can be newly created or opened in append mode, which adds to the end of
any existing file of the same name.

An interactive program can READ without naming afile. This displays atext box for the
user to enter data. If awRl TE does not specify afile, output is to the default output file. In
an interactive session, the default output file is the scrolled output window, but can be
assigned to afile. Batch runs always have output assigned to afile.

The oPEN command is optional. If afileisreferenced on a READ command and the longest
record in that fileis 80 characters or less, it is automatically oPENed. If afileisreferenced
on aWRl TE command, it is automatically oPENed with the same record length as the
current default output. By default, thisis 120 characters. To open afile with any other
characteristics, use the OPEN command.

By default, output files are new files. Use the APPEND option on the OPEN command to
append to existing files of the same name.

Filenames

Files have an external name that may be fully qualified with path or subdirectory
specifications. Specify filenamesin quotesif they contain characters such as slash,
comma or blank that have meaning in VisualPQL. For example:

READ (' D:\ SI RDB\ EMPDB\ DATA\ REC1. DAT') DATALI NE (A20)

When Visua PQL accesses afile, it passes the name directly to the operating system
without checking it.

SIR/XS uses ashort, internal, name or Attribute that is mapped to the long, fully qualified
filename. If afilenameisavalid SIR name not in quotes, it is checked against the current
set of attributes. If amatch isfound, the full filename that the attribute refersto is used.
Temporary attributes with internal names are automatically created for long names and
specific, named attributes are created by various VisualPQL and general SIR/XS
commands including OPEN and SET ATTRI BUTE.

SIR/XS Visual PQL 116

Binary Files

Normally filesread or written by explicit reads and writesin VisualPQL are text files;
that isthey contain readable characters together with end of record characters and can be
viewed with atext editor. VisualPQL can also read and write binary filesusing a
combination of the BI NARY keyword on the OPEN command and the Hex, 1B and RB
formats on the READ and WRI TE commands. Integers and real numbersin abinary file are
ininternal computer format and a binary file does not have end of record markers.
Reading and writing binary files means that exactly the number of bytes specified in the
read or write variable list are transferred between the file and the program. It isthe
programmer's responsibility to ensure that file and variable specifications match.

There are three formats that specify that binary datais being transferred. The HEXw
format isfor generic strings of binary data and these are not altered in any way by the
read/write process. The w specifies the length of field and can be up to 4094. Declare the
variable being used as anormal VisuaPQL string. If strings are written as text using the
A format as opposed to Hex format, if the string contains a hex character '00', it is taken
asthe end of any text output line and the line is truncated to that point.

The IBw and RBw formats allow the transfer of numeric data. IB isfor Integersin Binary
format and RB isfor Realsin Binary format. The w specifies the length of field and is 1,2
or 4 for integers, 4 or 8 for reals. For example, the following program copies any file:

program
integer*1l ibytel
string*256 a256
string*250 ol df | newf |
real *8 cnt fsize

cnt =0

c ** Change these names to required fil enanes
conmpute ol dfl = "splash. bnp’

conpute newfl = 'copy. bnmp

conmpute fsize=filestat(oldfl,10)
open inf dsnvar=ol dfl Irecl=256 binary
open outf dsnvar=newfl Irecl=256 binary wite
| oop
cnt =cnt +256
i fthen(fsize-cnt ge 256)
read (inf,error=end) a256(HEX256)
. wite (outf) a256(HEX256)

el se
¢ Less than 256 bytes left so go 1 byte at a tine
| oop
read(inf, err=end)ibytel(ibl)
wite(outf)i bytel(ibl)
end | oop
endi f
pool
end:

end program

MEMBER [REPLACE]|]

SIR/XS Visual PQL 117
OPEN
OPEN fileid
[BINARY]
[DELETE]
[DSN = 'file_nane' | DSNVAR = str_varnane |
| LDIVAR = str_varnane]
[DYNAM C]
[ERROR = statenent_|abel]
[1 OSTAT = num var nane |
[LRECL = max_rec_length]
[
[

READ

| WRI TE [APPEND]]

Opens the specified file or member for READ or WRI TE access, READ is the default. The
READ, WRI TE and CLOSE commands may use an opened file.

Files are accessed by the READ and WRI TE commands.

fileid

APPEND

Bl NARY

The internal name or attribute of the file isthe name referenced by any
READ, WRI TE or CLOSE command. If the external filename is exactly
the same as the attribute name and the file isin the default directory,
the DSN may be omitted. Otherwise the DSN clause must be specified.

If amember is being opened, this must be the member name. If the
family name is not specified, the current default family nameis used. If
the procfile name is not specified, the current default procfileis used.

Specifies that the opened file is added to the end of any existing file
with the same name. If the file does not exigt, it isjust created.

Specifies that the opened file is treated as a binary file. Dataisread or
written exactly as given and no trandation to text takes place. There
are no end of line or end or record markers.

To illustrate the differences between writing text and binary, suppose a
write statement references an integer with avalue of say 100. In the
text file (with no format), this results in the characters 100 (in
hexadecimal a character 0 is 30 and character 1 is 31 so thisis 313030)
but in a binary write (with format 1B4) of an integer*4, thisresultsin
the hexadecimal 4 bytes value 64000000 (Thisistrue on a PC but
different byte ordering applies on other machines that gives different
results). Similarly, if abinary fileisread, the internal fields on the read

SIR/XS

DELETE

DSN | DSNVAR
| LDl VAR

DYNAM C

ERROR

| OSTAT

LRECL

Visual PQL 118

must match the type of data being read. Y ou must know what you are
doing to use binary files!

Specifies that the opened file (or member) is deleted after it is closed.
Files are closed when a CLOSE command is executed or at termination
of the program. The CLOSE command also has a del ete option.

DSN specifiesafully qualified external filename enclosed in single
quotes ().

DSNVAR specifies the name of a string variable that contains the fully
qualified filename. A value of asterisk (*) specifiesthat the default
input or output files are used that may be useful during program
development and debugging.

LDI VAR specifies the name of a string variable that contains the
attribute name of thefile. A value of asterisk (*) specifies that the
default input or output files are used that may be useful during program
development and debugging.

Specifies that file attribute entry is not stored with the subroutine
object code.

Specifies a statement label where control istransferred if an error
occursin opening the file. If the ERROR clause is not specified and an
error in opening the file occurs, an error message is displayed and
program execution terminates.

Specifies anumeric variable to hold areturn code. If | OSTAT is
specified and an error occurs, avaueis assigned to the specified
variable and control transfers to the ERROR clause statement label. If
there is no ERROR clause, execution continues with the next statement.
If | OSTAT is not specified and an error occurs amessage is printed and
the program is terminated. The codes for normal files are:

0 Successful Open
5 File |l ocked (in use)
- 6 File not found
- 8 Access problem
- 9 M scell aneous probl ens

The codes that apply to nenbers are standard error
nessage nunmbers and are:

439 Cannot form menber nane.

440 Menber must be type text.

441 Family password mi smatch.

442 Menber password mi smat ch.

443 Cannot open procedure file.

444 Family not found.

445 Menber found but replace node not specified.
446 Menber not found.

447 Cannot open scratch file to process nenber.
449 Procedure file already open in this retrieval.

Spoecifies the lonaest record lenath (in bytes) on the file beina opened.

SIR/XS

MEMBER

REPLACE

READ | WRITE

Visual PQL 119

If LRECL is not specified, 80 bytes for READ and the current default
output width (that itself defaults to 120) for WrRI TE are used. If arecord
longer than the specified length is encountered, the record is truncated
and awarning message is issued.

Specifies that the fileid is a procedure file member. Once opened, a
member can be read from or written to. Only one member of the
procedure file may be open at any given time. If amember is not
explicitly closed with the CLOSE command, it is closed at the
termination of the program.

REPLACE gives permission to overwrite an existing member. If the
specified member does not exist, this keyword has no effect. If an
attempt is made to write to an existing member and this keyword is not
specified, the member is not overwritten and an advisory message is
issued. A family cannot be created with an OPEN command.

READ, the default, opens the file or member for read access.
VRl TE opens the specified file or member for write access.

SIR/XS Visual PQL 120

CLOSE
CLOSE fileid [DELETE]
Closes the specified file. CLOSE may be used to close afile early in a program in order to

reopen it later during the same program. Closing and then opening afile allows the
program to re-read the file from the beginning.

DELETE Thefile or member is deleted when it is closed.

SIR/XS Visual PQL 121

DELETE PROCEDURE FILE MEMBER

DELETE PROCEDURE FI LE MEMBER nane

Removes the named procedure file member at execution time. The name may be astring
constant, a string variable or [string_expression]. The type must be specified. Any
member type may be deleted. (The delete option on the OPEN' CLOSE commands can only
be used with text members.)

The format of the name is the normal member name format i.e.:

[procfile.][fam | y[/pword].] nenber[/pword]:type

SIR/XS Visual PQL 122

READ

Interactive READ

READ ['pronpt _text'] 1/0O_list
["prompt _text'] 1/Olist ...
File READ
READ (fileid, [ERROR=I abel] [| OSTAT=VARNAME] [MEMBER]) 1/Q i st

The interactive READ reads input from the user, popping up a box with the specified
prompt (a question mark ? is displayed if no prompt text), space for data entry and
response buttons that allows entry of data. The program waits for the user to enter data.
Regardless of the number of fields on the input specification, a single box is popped. (If
multiple boxes are wanted, specify multiple prompts and i/o lists.) Input fields are
delimited by spaces. The user must enclose a string input field in quotesif it contains
spaces.

It is recommended that thisinteractive read is not used. Use DI SPLAY TEXTBOX instead.

Thefile READ reads from afile. Records are read from first to last sequentially, a new
record being read each time a READ of thefile is executed.

Input is read according to thei/o list and values read from the input are assigned to
program variables.

If thefileisanormal text file then fields from the file are translated into appropriate
internal formats. Each read reads a single record.

If thefileisabinary file, input fields must match the type of the fields on the file in order
to process data correctly and just those fields specified are read.

If explicit OPEN and CLOSE commands are not used, the first time the READ is executed the
fileis opened and program termination closes the file. If the file cannot be opened
successfully, an error message is displayed and the program stops executing.

A READ command is not a block control statement and simply executes without looping.
In order to read through a completefile, it is necessary to enclose the READ in alooping
block, typically aWHl LE (1 OSTAT =0).

SIR/XS Visual PQL 123

An| OSTAT = varname may be specified as areturn code. An ERROR = label may be
specified that is gone to when an error condition is encountered on the READ. Return
codes with any value other than zero are errors. When the program reaches end of file,
thisresultsin an error return code (-4) and programs normally treat any non-zero return
code asend of file.

PROGRAM

STRING * 80 LINE

| NTEGER*1 STAT

STAT = 0

WHI LE (STAT = 0)

. READ(| NPUT. TXT, | OSTAT = STAT) LI NE(A80)

. VWRI TE LI NE(A80) | display what we read
END WHI LE

END PROGRAM

Options

"prompt text' Thetext displayed on the screen to request input. Specifying prompt
text or omitting a filename indicates that interactive input is expected.
The text box is displayed with asingle line for input. The maximum
input size is 80 characters. Multiple fields may be read at once
depending on the format specification. A second prompt may be
specified on the single command that is essentially identical to
repeating the command.

fileid Specifies the name of the input file or member. This may be afilename

or an attribute name.

ERROR Specifies a statement label in the program. Control is passed to that
point if an error or end-of-file condition occurs.

| OSTAT Specifies an integer variable for areturn code. Return codes are:
0 Success
-1 File not Open
-4 End of File

MEMBER Specifies that the file being read is a member from the procedure file.

Thisisunnecessary if already specified on an explicit OPEN.

SIR/XS Visual PQL 124

[/O List - Input Specification

I/0O lists contain variable names and their formats. The formats can be fixed-field, free-
field or pictures, and can contain positional specifiers.

Fixed-field formats

lw Integer, w digits wide

Fw.d Real single precision, w digits wide, d decimal places
Ew. d Real, scientific notation

Dw.d Real double precision, w digits wide, d decimal places
Aw String, w characters wide

Bw String, characters reversed (backwards)

DATE 'format' Datein specified date format.

TIME 'format’ Timein specified time format.

Free-field formats

* Any free-field variable

| * Integer

F* Rea

E* Real, scientific notation

D* Real, double precision

Ax String

Positional specifiers

nX Skip the next n columns.

nT Move (Tab) to column n before reading the next variable. Column n can be to the
left or right of the current position.

SIR/XS Visual PQL 125

Binary Formats

HEXw Binary string, w digits(up to 4094)

| Bw Binary integer, w digits(1,2 or 4)

RBw Binary real, w digits (4 or 8)

Delimited Input

The freefield input formats (represented by *) must establish what represents afield on
theinput. If the field isin quotes, then the string in the quotesis used (start and end
guotes stripped off). In unquoted strings, blanks, tabs and commas are delimiters.
Multiple blanks or tabs are treated as a single delimiter. Multiple commas are taken as
multiple fieldsi.e. each comma corresponds to one field on the read input format. Two
commas together in the record result in blank input to that field.

Picture clauses

Instead of aformat, a picture clause enclosed in quotes can be specified. Aside from the
following specific picture characters, any other characters that appear in the picture must
appear "asis" in theinput record. The input field must conform to the specified picture:
d any digit

s digit, decimal point, plus or minus

a any letter

u any uppercase letter

| any lowercase letter

c any character

SIR/XS Visual PQL 126

REREAD

REREAD (fileid, [ERROR= label/] [| OSTAT= varnane/]) 1/O_list

Rereads the last record read from the specified sequentia file. The syntax for the
command is the same as the READ command.

The REREAD may specify adifferent input specification from the previous READ. For
example:

PROGRAM
STRI NG*80 TEXTLI NE
STRING*20 STUDENT
| NTEGER*1 RECTYPE NAME SEX ETH CODE RANK
READ (DATAFI LE. DAT) RECTYPE(I1) NAME(A20) 3X
SEX(11) ETH CODE(11) RANK(I 1)
| FTHEN (RECTYPE = 2)
REREAD (DATAFI LE. DAT) RECTYPE (| 1) TEXTLI NE(A80)
ENDI F
... pgql conmmands
END PROGRAM

SIR/XS Visual PQL 127

WRITE

Default WRITE

WRI TE |/ 0O Li st

File/Member WRITE

WRI TE (fileid [ERROR=I abel] [OSTAT=varname] [MEMBER [REPLACEH]]
[NOEOL]) I/0 List

The default WRI TE writes output to the scrolled output or assigned output file. Thereis no
paging on interactive output. Pages are maintained when standard output is assigned to a
file.

Thetext file or member WRI TE creates anew file, appends to an existing file (with the
APPEND option on the OPEN) or creates a new member and writes records to the end of the
specified file each time the WRI TE command is executed. Output is formatted according to
thei/o list and assigns values from the program variables to the output.

The binary file WRI TE creates a new file or appends to an existing file (with the APPEND
option on the OPEN) and writes fields to the end of the specified file each time the WRI TE
command is executed. The exact values from the program variables are written to the
output in the internal format of those variablesif they are strings or if the binary formats
areused: IB1, IB2 or IB4, IR4 or IR8, (Use I1B4 for dates or times).

fileid Specifies the name of the output file or member. This may be an
attribute or filename.

The filename STDOUT can be used when options such as NOEQL are
required but output is still directed to the default output.

Thefilename caA specifiesthat, if the program isbeing used in CGI
mode from a webserver, output is returned to the server (which means
that it appears on the user's web page). If the program isrun in normal
mode, i.e. not from awebserver, then afile caled si rcgi . ht mis
created. The NOEQL option can be used with ca

ERROR = | abel Specifies a statement label in the program. Control is passed to this
label if an error condition occurs on the command. If the ERROR or

SIR/XS Visual PQL 128

| OSTAT clause is not specified and an error occurs, an error message is
written and the program is terminated.

| OSTAT Specifies the name of a numeric variable that returns any error code.
The value zero indicates no error, a negative number indicates the type
of error that occurred.

MEMBER Specifies that the file being written is a member from the procedure
file. Thisisunnecessary if already specified on the explicit OPEN.

REPLACE Gives permission to overwrite an existing member.

NOEQL Specifies that the output is written without an end of line. The next
VRl TE simply continues putting data to the file and no new record is
created. This can be used to build a complete file in a particular format
without any end of line characters or can be used interspersed with
VRl TE commands that do create end of line.

SIR/XS Visual PQL 129

I/O List - Output Specification

I/O lists contain variable names or expressions and formats. The formats can be fixed-
field, free-field, or pictures, and can contain positional parameters. If aslash (/) appears
in the output specification, the write is positioned to the next line. The backslash (\) is not
allowed in an output specification.

To specify an expression in an output specification, enclose it in square brackets. The
value of the expression is calculated and output according to the output format at
execution time.

Format specifications for date, time and categorical variables may be numeric or string.
The datais automatically converted to a proper output string, if string specifications are
used.

If an output format is not specified, the first format encountered is taken to apply to all
previous fields without a format.

If no formats or afree-field (*) format is specified, the following defaults are used:

Integers use an "Iw" format, where w is the minimum required to print the value.
Floating point either use an "Fw.d" format, where "w" and "d" are adjusted to
maintain significance up to 8 decimal places or the "E" (scientific) notation with 5
significant decimal digits, depending on the value written.

Strings use an "A*" format that writes the number of charactersin the string
followed by a blank.

Date, time and categorical variables are written as strings.

Do not specify an output format for string constants (characters enclosed in quotes); these
are written out as specified. If aformat is specified, an error message is issued.

Picture clauses

A picture can be specified for numeric fields instead of aformat. A pictureisastring of
characters, enclosed in quotes. Within the picture certain characters have special
meanings.

Each digit can be represented by a"9", a"z", a"*" or a"$". "9" specifies that leading
zeros are replaced by blank; "z" specifies that |eading zeros are written; "*" specifies that
leading zeros are replaced by "*"; "$" after an initia "$" character, represents a floating
dollar sign where leading zeros are suppressed. If the field has a value of zero, a picture
of al "9"sresultsin blanksand all "$"'sresultsin asingle"$" since al leading zeros are
suppressed; if asingle zero iswanted, specify asingle "z" asthe last character of the

SIR/XS Visual PQL 130

picture.

A period represents the decimal point and separates the specification into characters
before and after the decimal point. There can only be one decimal point (period) in the
picture. If there are insufficient digits to display the integer portion of the field (including
any minus sign when negative and $ when specified), the field iswritten as all 'X's. The
decimal component is rounded to match the number of decimal digits specified. If there
are no decimal digitsin the picture, the field is rounded to the integer value.

Specify comma (,) to insert this character. If leading zeros are suppressed (by blanks or a
floating dollar), any leading commas are suppressed. If asingle dollar sign is specified, it
isoutput in that position. If multiple dollar signs are specified, these suppress leading
zeros and result in afloating dollar sign that is output in front of the first significant digit.
After the decimal point, the special characters"9", 'Z',"$" and "*" are all equivaent and
specify adigit. Any other characters are treated as any other specia character.

Negative numbers, by default, are output with a minus sign ahead of the first significant
character. If an explicit minus sign isincluded as the last character in the picture, and the
number is negative, the minusiswritten at that point. Any other characters are output at
the position specified in the picture.

The same picture specifications apply to the PFORVAT function. For example:

PROGRAM
c The following formats produce follow ng output

WRITE [1234.56]('Z2Z2Z22Z. Z Z')
WRI TE [1234. 56] (' 222Z')
END PROGRAM

1234. 56
1235

WRI TE [123.4] (' $2Z, 2ZZ.99-') | $00, 123. 40
WRI TE [123456789] (' ZZZ- 77Z- 77Z') | 123-456- 789
WRI TE [-123.4] (' 99, 999.99") | -123. 40
WRI TE [-123.4] (' $99, 99Z.99') | $ -123.40
WRITE [-123.4] (' $$, $$Z.99') | -$123. 40
WRI TE [-123.4] ('ZZ, 22Z.99") | -0,123.40
WRI TE [-123.4] (' $2Z, 2ZZ.99') | $-0,123.40
WRI TE [-123.4] ('99,999.99-") | 123. 40-
WRI TE [-123.4] (' $99,99Z.99-") | $ 123.40-
WRITE [-123.4] (' $$, $$Z.99-') | $123. 40-
WRI TE [-123.4] ('ZZ, 2ZZ.99-') | 00, 123. 40-
WRI TE [-123.4] (' $2Z, ZZZ. 99-') | $00, 123. 40-
WRI TE [1234. 56] (' $*****xx **' | $***1234.56

I

|

Fixed-field formats

lw Integer, w digitswide

Fw.d Real single precision, w digits wide, d decimal places
Ew d Real, scientific notation

Dw.d Real double precision, w digits wide, d decimal places

SIR/XS Visual PQL 131

Aw String, w characters wide
Bw String, characters reversed (backwards)

DATE 'format' Seedateformatsfor acomplete description. For example:
VRl TE XBEG (DATE ' MW DD, YYYY')

TIME ' format' Seetime formatsfor a complete description. For example:
WRI TE ALARM (TI ME ' HH: MM SS')

Free-field formats

* Any free-field variable

| * Integer

F* Real

E* Real, scientific notation

D* Real, double precision

Ax String

Positional specifiers

nX Skip the next n columns before writing the next variable.

nT Move (T ab) to column n before writing the next variable. n must be 1 or greater.
Array Element Printing

nE Print the next n elements of the previous array. n must be 1 or greater. Multi-

dimensional arrays are printed so that entry (1,1) isfirst, (2,1) is second through to (n,1)
that is followed by (1,2) etc.

SIR/XS Visual PQL 132

Database Access

There are VisuaPQL commands that access and update data stored in a Database.

Any VisuaPQL program that uses CASE or RECORD processing commands must begin
with the RETRI EVAL command. Thisimplicitly opens the current default database for
access by the retrieval. By default, the database is opened for read, meaning that the
retrieval can get data from the database but cannot add, delete or modify data. Retrievals
that create, modify or delete database data must use the UPDATE option on the RETRI EVAL
command.

By default, the last database connected is the defaullt.

If aVisua PQL program references a database, it must be connected when the retrieval is
compiled and must be connected when the retrieval is executed.

There are commands to connect and disconnect databases. A VisualPQL retrieval can
access a specified database and then all references are to variables in that database.

A SIR/XS session can be started with an MsT= parameter, in which case any database
access by Visual PQL programsis through the concurrent MASTER process. A session can
logon and logoff to Master as necessary. Visual PQL database accessis either local or
through Master depending on the current status of the master setting.

When operating in concurrent mode, locks on individual records may be specified. If a
retrieval does not specify locks, defaults are used. If aretrieval specifieslocks and does
not run through master, any locking isignored. Anidentical VisualPQL retrieval can run
concurrently and independently. Even if there are processes accessing the database
through MASTER, aretrieval can be runin a SIR/XS stand-alone session and use read
only mode against the same database.

Data availability during retrieval

During the execution of aretrieval, data can bein local variables, case or common
variables and record variables. The same name may be used for local, case and record
variables and the actual variable referenced depends on the placement of the command
and its scope.

Local Variables

Local variablesinclude the variables and arrays declared explicitly or implicitly in the
routine and any variables included with an | NCLUDE EXTERNAL VARI ABLE BLOCK.

SIR/XS Visual PQL 133

Casevariables

If the database is a case structured database, each case in the database has one CIR or
Common Information Record. The CIR contains common variables including the Case
Identifier variable that uniquely identifies each case. The common variables are defined
when the database schemaiis created.

During execution, aretrieval accesses a CIR with one of the Case Processing commands.
A case processing command defines a block of commands, a Case Block. The common
variables are available at any point in the case block, including within record processing
blocks. When a case block is executed the case variables are read and other commands
within the block can use the common variables. When the case block is exited or when
another case isread, if the CIR has been modified it is replaced in the database.

Record variables

Databases are made up of multiple Record Types. Each record type contains a set of
variables defined during database schema definition. Some of these variables may be key
fields that, in combination with the case identifier variable, uniquely identify an
individual record. The structure of the record type cannot be altered through aretrieval.

During execution, the retrieval accesses records with one of the Record Processing
commands. A record processing command defines a block of commands, a Record Block.
Within arecord block other commands may get values from or put values into the record
variables. When arecord block is executed the record variables are read and other
commands within the block can use these variables. When the record block is exited or
when a new record isread, if the record has been modified it is replaced in the database.

If arecord block is nested within another record block, the variables for the outer record
are restored when the inner block is exited.

Priority of Accessto Data

At any given point during retrieval execution, aretrieval potentially has access to one set
of common variables, one set of record variables and the local variables. It is possible,
even likely, that alocal variable has the same name as a common or record variable in the
database. If the referenced variable exists both as a database variable and alocal variable,
Visual PQL uses the following rules to decide which variable to use:

If the reference is outside a case or record block, the local variable is used.

If the reference is within a case block, the case variable is used rather than alocal
variable of the same name.

If the reference is within arecord block, the record variable is used rather than a
local variable of the same name.

SIR/XS Visual PQL 134

If the reference is within arecord block and the CIR and the record both contain a
variable of the same name, the record variable is used. If the variable is updated,
both the record variable and the CIR variable are updated.

Skipping blocks

Commands specify a particular record or record type to retrieve. If there are no matching
records, then the block of commands is skipped completely. When developing aretrieval,
this must be taken into account. For example:

RETRI EVAL
PROCESS CASES ALL
OLD REC | S EMPLOYEE
GET VARS ALL
PROCESS REC 2
GET VARS ALL
VWRI TE | D NAME SALARY
END PROCESS REC
END REC I S
END PROCESS CASE
END RETRI EVAL

Thewrl TE command is not executed if there are no record type 2 for an employee and
thus that employee does not appear on the output. Any variables that are updated within
the block, are not reset. The AUTGSET command can be used to reset variablesin this
instance.

SIR/XS Visual PQL 135

PQL CONNECT DATABASE

PQL CONNECT DATABASE dat abase_name_exp
[PREFI X prefix_exp]

[SECURI TY exp, exp, exp]

[1 OSTAT var nane]

Connects the specified database at execution time. Sets this as the default database. Does
not automatically run any SYSTEM procedures.

All the parameters, except the | OSTAT varname are expressions; enclose any name
constants in quotes.

Thereis atable of connected databases, one of which may be the current default
database. By default, the last database connected is the default and is the first database
referenced by aRETRI EVAL.

If aVisualPQL retrieval references a database, it must be connected when the program is
compiled and must be connected before it is executed. This means that the PQL CONNECT
DATABASE command cannot be used to connect and compile or connect and execute
within one Visua PQL process.

A database can also be connected with the SIR/X'S command CONNECT DATABASE.

SECURI TY Three expressions separated with commas. Specify the database password,
then the read password then the write password.

| OSTAT A numeric variable that returns the database connection number if successful or a
negative number (in the range -2001 to -2058) if there is a problem with the connection.
See error messages.

SIR/XS Visual PQL 136

PQL DISCONNECT DATABASE

PQL DI SCONNECT DATABASE dat abase_name_exp
[1 OSTAT var nane]

Disconnects the named database. If PQL DI SCONNECT is executed on the default database,
the default is set to zero and SY SPROC is set as the procfile.

| OSTAT A numeric variable that returns a negative number (in the range -2001 to -2058)
if thereis a problem with the connection. See error messages.

SIR/XS Visual PQL 137

DATABASE IS

DATABASE [I S] dbname [UPDATE| NOUPDATE]

Starts a block that accesses a specified database. May only be used in aRETRI EVAL.
Inside this block, all references are to variables in the new database. Any standard
Visua PQL commands can be used in thisblock. (Thisis not alooping block so NEXT
cannot be specified.)

Within aRETRI EVAL, the initial database is the default database.

Note the database name in this command is a constant e.g. DATABASE | S COVPANY not an
expression as the nameisrequired at compile time as well as during execution.

END DATABASE IS

END DATABASE [| S]

Ends definition of a database block. References outside this block are to the original
database. When the block is exited, if there was an original database, it is made current.

SIR/XS Visual PQL 138

Case Processing Commands

The case processing commands define a block of commands that is delimited with the
END CASE command. These commands are not valid for caseless databases. Each time a
case is accessed with one of these commands, the common CIR variables are available to
other commands within the block. There are two commands that process cases:

PROCESS CASES retrieves a specific set of cases and updates these cases if
required.

CASE | S (and the variants NEW CASE | S and OLD CASE | S) retrieves or creates a
single case with a specified caseid.

All updates to the database, including the creation of a new case, require the UPDATE
keyword on the RETRI EVAL command. New cases are created with the CASE | S or NEW
CASE | S block. Existing cases may be accessed with the other types of case blocks.

Commandsin CASE Blocks

All commands(except AFTER RETRI EVAL), including other case block commands, may be
used within a case block. The following commands may only be used within a case
block:

DELETE CASE
EXIT CASE
NEXT CASE
RESTCORE CI R
RETRY CASE
BACKUP

Be aware of how commands transfer values from the CIR to local variables and vice-
versa

Any VisualPQL command in a case block that assigns avalue to avariable
assigns the value to a common variable if acommon variable of the specified
name exists.

The value of the case identifier variable can never be modified from within a case
block.

COVPUTE can be used within case blocks to update database variables. If the computed
variableisa CIR variable, the value of the expression is assigned to it and the database
value is modified. For example, in a database that has a common variable called
COMWAR, the following retrieval allows the user to modify its value.

SIR/XS Visual PQL 139

RETRI EVAL UPDATE

CASE IS 5

WRI TE ' Current Value of COMWAR is ' COVWAR

COVWUTE COMWAR = SREAD(' Enter New Val ue for COMWAR)
END CASE

END RETRI EVAL

GET VARS transfersthe value of a CIR variable to alocal variable. When a CIR variable
isreferenced within a case block, the value of the CIR variable is used (even if alocal
variable of the same name exists).

GET VARS can implicitly define alocal variable with the definition of the database
variable as well transferring the value, whereas COMPUTE simply assigns the value.

PUT VARS transfers values of local variablesinto database variables. PUT VARS may only
be used in update mode.

The following example assigns the value of a CIR variable to alocal variablethat is
accessed later from outside the case block.

RETRI EVAL
PROCESS CASES REVERSE COUNT = 1 | find the |ast case
GET VARS COVMWAR | get value of COMWAR
END CASE

WRI TE COMWAR | display val ue of COMWAR

END RETRI EVAL

Case Functions

COUNT(rt _num) Returns the number of records of the specified record type belonging to
the current case. If the specified record type is not defined, an
undefined value is returned. (Use in the case block.)

SYSTEM 14) Returnsa lif thelast CASE 1'S, NEW CASE 1S, or OLD CASE | S block
was executed. It returns O (zero) if the last block was not executed.
SYSTEM 15) Returnsa 1 if the last CASE | S or NEW CASE | S block created a new

case. It returns O (zero) if the block did not create a new case. (Use the
SySTEMfunctions after the case block.)

SIR/XS Visual PQL 140

CASE IS

[NEW| OLD] CASE IS caseid [LOCK = nuni

CASE | S defines ablock that accesses the single case specified by the caseid. The caseid
value may be a constant or local variable, including an array reference.

CASE IS Accesses asingle case in the database. If the case does not exist, then
in UPDATE mode, anew caseis created; if the retrieval is not in UPDATE
mode and the case does not exist, the CASE | S block is skipped.

QLD CASE IS Accesses an existing case. If the case does not exist, the CASE | S block
is skipped.

NEW CASE IS This command isonly allowed in a RETRI EVAL UPDATE and creates a
new case with the specified case identifier value. If the specified case
already exists, the NEw CASE | S block is skipped and no new caseis
created.

LOCK Specifies case level locking for concurrent operations.

SIR/XS Visual PQL 141

DELETE CASE
DELETE CASE [KEEPCIR]

Deletes the current case (CIR) and all records belonging to the case. This command is
only allowed in UPDATE mode. Only users with the highest read and write security
passwords for the database may del ete cases and records.

KEEPCI R Deletes all records belonging to the case but does not delete the
Common Information Record.

The following example deletes all cases that do not have any record type 1 records.

RETRI EVAL UPDATE
PROCESS CASES

| F(COUNT(1) EQ 0) DELETE CASE
END CASE

END RETRI EVAL

SIR/XS Visual PQL 142

END CASE

END CASE
Terminates CASE | S and PROCESS CASE blocks.
END CASE | Sterminates CASE | S blocks only.

END PROCESS CASE terminates PROCESS CASE blocks only.

SIR/XS Visual PQL 143

EXIT CASE
EXI T CASE

Terminates processing of the current case block and transfers control to the first
statement following the END CASE.

SIR/XS Visual PQL 144

NEXT CASE

NEXT CASE

Terminates processing of the current case and retrieves the next case if there is one that
meets the PROCESS CASE specification.

SIR/XS Visual PQL 145

PREVIOUS CASE

PREVI QUS CASE

Terminates processing of the current case and retrieves the previous case if thereisone
that meets the PROCESS CASE specification. Use of thiswith SAMPLE or COUNT yields
unpredictable results.

SIR/XS Visual PQL

PROCESS CASE

PROCESS CASES [ALL]
[COUNT = total [,inc [,start]]]
[LIST = caseid list]
[LOCK = nuni
[REVERSE]
[

SAMPLE = fraction [,seed]]

Defines the beginning of a case processing block that is delimited by the END CASE
command. PROCESS CASE and PROCESS Cl R are synonyms.

The options on PROCESS CASES define the set of cases that are stepped through. The
commands in this block are executed once for each case within the specified set.

If thereis no PROCESS CASE command in the retrieval and the database has a case
structure, a PROCESS CASES ALL command is generated before the first executable
command in the retrieval. The NOAUTOCASE option on the RETRI EVAL command
suppresses this.

ALL Processes all cases in the database. Thisis the default.
COUNT Specifies the number of cases to process. The valuesfor total,

146

increment and start are variables or expressions which should resolve

to positive integer values. A single integer number isavalid
expression.

t ot al

Specifies the maximum number of casesto retrieve. If more cases are
requested than are available, the retrieval reads as many as exist. For

example, to processthe first 5 casesin the database:

PROCESS CASES COUNT = 5

i ncrenment

Specifies the "skipping factor” for retrieving cases. An increment of 3

produces every third case. For example, to access atotal of 5 cases,
retrieving every tenth case:

PROCESS CASES COUNT = 5, 10

start

SIR/XS

LI ST

LCOCK
REVERSE

SAMPLE

Visual PQL 147

Specifiesthe ordinal of thefirst case processed. For example, 3 starts
retrieving at the third case.

Specifies alist of caseidentifier values of the cases to process. The list
may be composed of constants or variables. The THRU keyword
specifies an inclusive range of caseid values. For example:

PROCESS CASES LI ST
VRl TE | DNUM
END CASE

1,2,8,17

PROCESS CASES LI ST
VRl TE | DNUM
END CASE

1,5 THRU 10, 18, 20

SET FVAR LVAR (5, 10)

PROCESS CASES LI ST = FVAR THRU LVAR
VRI TE | DNUM

END CASE

Specifies case level locking for concurrent operations.

Specifies that the cases are processed in reverse order. Note that if you
specify alist of specific cases, the list order isthe order of processing
regardless of this setting.

Retrieves arandom sample of cases from the database. The specified
values for fraction and seed are variables or expressions which should
resolve to positive numbers. A specific decimal number or positive
integer isavalid expression.

fraction

Specify anumber between 0 (zero) and 1 (one). The retrieval generates
arandom number between 0 and 1 for each case. If the number falls
between 0 and the specified number, the case is retrieved, otherwise
processing goes on to the next case. Since each case is evaluated for
inclusion independently, the actual sample may not be exactly the
requested size particularly for databases with alimited number of

cases. For example, to process 25% of the cases:
PROCESS CASES SAMPLE = .25

seed

Specify the starting seed for the random number generator. A given
seed guarantees that the same set of random numbersis generated.
Note that the PQL Procedures may also use samples and the SAMPLE
option here, resets the seed for any sampling. It is recommended that
the seed is set using the SEED option on the retrieval command and that
all subsequent sampling in the retrieval uses the random numbers
generated from that. If a seed is not specified, the random number

generator is not reset. For example
PROCESS CASES SAMPLE = .25 , 13579

SIR/XS Visual PQL 148

RESTORE CIR

RESTORE CI R

Re-reads the CIR from the database. When a case block isfirst executed, a CIR isread.
Updates to common variables are performed in memory. The modified record isre-
written when the case block is exited, another CIR is accessed or when a BACKUP
command forces awrite. A RESTORE Cl R before the datais re-written cancels all
modifications.

SIR/XS Visual PQL 149

Record Processing Commands

Record processing commands access a specific record type. These commands define a
block of commands that is delimited with the END RECORD command. When arecord is
accessed, the record variables are available to other VisualPQL commands within the
record block. On case structured databases, record blocks must be nested within a case
block. There are two commands that process records:

PROCESS RECORD retrieves a specific set of records and updates these records if
required.

RECORD | S (and the variants NEW RECORD | S, OLD RECORD | S) retrieves or
creates a single record with a specified record key.

To perform any updates to the database, including the creation of new records, the
retrieval must be in update mode. New records are created with aRECORD | S or NEW
RECORD 1 S block. Existing records may be accessed with the other types of record
blocks.

Record Functions

RECLEVEL(0) Returns the update level at which this record was last written to the
database. Can only be used in arecord block.

SYSTEM 3) Returns the update level at which arecord was last written to the
database. The record referred to is the record from the last record block
executed.

SYSTEM 16) Returnsalif thelast REC IS, NEW REC | S, or OLD REC | S block was
executed. It returns O (zero) if the last block was not executed.

SYSTEM 17) Returnsa 1l if thelast REC | S or NEW REC | S block created a new

record. It returns O (zero) if the block did not create a new record. (Use
the SYSTEM functions after the record block.)

Commandsin RECORD Blocks

All commands, including other record block commands, may be used within a record
block. The following commands may only be used within arecord block:

DELETE RECORD
EXIT RECORD
NEXT RECORD
RESTORE RECORD
RETRY RECORD

BACKUP.

SIR/XS Visual PQL 150

Be aware of how commands transfer values from the record to local variables and vice-
versa:

Any command in arecord block that assigns avalue to a variable assign the value
to a database record variable if arecord variable of the specified name exists.

The values of the case identifier variable and record type keyfield variables can
never be modified from within arecord block.

COMPUTE Or PUT VARS can be used in record blocks to update database variables. The
database variables can only be updated in aretrieval in update mode. If the computed
variable isacommon or record variable, the value of the expression is assigned to it and
the database value is modified.

COVPUTE Or GET VARS can be used to transfer the value of a database variable to alocal
variable. GET VARS implicitly defines alocal variable with the same definition as the
database variable as well transferring the value, whereas COMPUTE simply assigns the
value. When arecord variable is referred to in an expression, the record variable is used
even if alocal variable of the same name exists.

SIR/XS Visual PQL 151

RECORD IS

[OLD | NEW] RECORD IS {name | nunber} (value Ilist)

Defines arecord block that accesses a single record. The value list must specify avalid
value for every keyfield of the record type. If any keyfield is missing or undefined, the
block is skipped. RECORD and REC are synonyms. In a case structured database, record
blocks occur within case blocks and the records accessed belong to the current case.

RECORD IS Accesses arecord if it exists. I it does not exist and the retrieval is not
in UPDATE mode, the RECORD | S block is skipped. In UPDATE mode, a
new record is created.

OLD RECORD 1S Accesses an existing record. If the specified record does not exist, the
OLD REC | S block is skipped.

NEW RECORD | S Creates a new record with the specified key values. Only allowed in a
RETRI EVAL UPDATE. If the specified record exists, the NEW REC | S

block is skipped.
name | nunber Therecord name or number. This must be specified.
val ue |ist A list of values expressed as constants, variable names or array

references. Each element in the list represents a value for a keyfield.
Specify the values in sequence to match keyfields in the order defined
in the schema. Specify avalid value for every keyfield of the record
type. If any keyfield is missing or undefined, the record block is
skipped. If the record type being accessed has no keyfields, specify the
command without avalue list.

LOCK Specifies record level locking for concurrent operations.

SIR/XS Visual PQL 152

DELETE RECORD

DELETE RECORD Deletes the current record.

A record can only be deleted in UPDATE mode. Deleting a record requires write security at
an equal or higher level to the record write security level. It also requires write security at
an equal or higher level to the highest write security level of any variable in the record.
For example, the following deletes all record type 3 records that were updated at update
level 47:

RETRI EVAL UPDATE

PROCESS CASES
PROCESS REC 3
| F(RECLEVEL(0) EQ 47) DELETE REC
END REC

END CASE

END RETRI EVAL

SIR/XS Visual PQL 153

END RECORD

END RECORD [S]

END PROCESS RECORD
END PROCESS JOURNAL
END JOURNAL RECORD

TerminateS RECORD | S, PROCESS RECORD blocks and PROCESS JOURNAL, JOURNAL
RECORD blocks.

END RECORD | S terminates RECORD | S blocks.

END PROCESS RECORD terminates PROCESS RECORD blocks.
END PROCESS JOURNAL terminates PROCESS JOURNAL blocks.
END JOURNAL RECORD terminates JOURNAL RECORDblocks.

REC is a synonym for RECORD.

SIR/XS Visual PQL 154

EXIT RECORD

EXIT RECORD

Terminates processing of the current record block and transfers control to the first
statement following the END RECORD.

REC is a synonym for RECORD.

SIR/XS Visual PQL 155

NEXT RECORD

NEXT RECORD

Terminates processing of the current record and retrieves the next record if it exists. REC
isasynonym for RECORD. The following example processes only the malesin the
database.

RETRI EVAL
PRCCESS CASES
PROCESS RECORD EMPLOYEE

| FNOT (GENDER = 1) NEXT REC |- go to next rec if not nale
VRl TE NAME SSN BI RTHDAY

. END REC

END CASE

END RETRI EVAL

SIR/XS Visual PQL 156

PREVIOUS RECORD
PREVI OUS RECORD
Terminates processing of the current record and retrieves the previous record if it exists,

REC is asynonym for RECORD. Use of this with SAMPLE or COUNT yields unpredictable
results.

SIR/XS

Visual PQL 157

PROCESSREC

PROCESS RECORD

name | num

LOCK = num]

| NDEXED BY i ndex_nane]

ONETI ME]

REVERSE]

AFTER (value list)]

AFTER (value list) THRU (value list)]
AFTER (value list) UNTIL(value list)]
FROM (value list)]

FROM (value list) THRU (value list)]
FROM (value list) UNTIL(value list)]
THRU (value list)]

UNTIL (value list)]

VIA (value list)]

— e e A —

PROCESS RECORD, (PROCESS RECisasynonym), definesablock of commandsthat are
executed repeatedly, once for each record of the specified type within the specified range.
If the command does not use the | NDEXED BY construct, then, in a case structured
database, the command must be inside a case block and the records accessed are those
belonging to the current case.

Note: Specifying arecord selection clause (e.g. AFTER, FROV, THRU, etc.) on the PROCESS
REC locates records through the database index, which is an efficient way to process
subsets of records. Use record selection clauses whenever possible.

name | num
LOCK
| NDEXED BY

ONETI ME

REVERSE

AFTER

The name or number of the record type to retrieve. Thisisrequired.
Specifiesrecord level locking for concurrent operations.

Specifies the name of the index to use to retrieve records. All record
selection clauses can be used in conjunction with | NDEXED BY. When
an index is used, the key values are those values used for the index.

By default, when no records exist within the specified range, the block
is skipped. ONETI ME forces the block to be entered with the values of
the record variables set to undefined, when there are no matching
records.

Processes the records in reverse order. If used with arecord selection
clause, processes the selected subset in reverse order. If specifying a
range of record keys to select, specify these in the normal way (i.e. the
FROMkey has alower value than the UNTI L key).

Selects records whose keyv value is areater than that specified by the

SIR/XS

FROM

THRU

UNTI L

VI A

val ue |i st

Visual PQL 158

value list. AFTER can be used in combination with THRU or UNTI L to
specify arange of keys.

Selects records whose key value is greater than or equal to the key
specified by the value list. FROMcan be used in combination with THRU
or UNTI L to specify arange of keys.

Specifies the key value to process to and include in the retrieved
subset. Use AFTER or FROMto specify a beginning record for
processing.

Specifies the key value to process up to but not include in the retrieved
subset. Use AFTER or FROMto specify a beginning record for
processing.

Selects records whose key value matches (equals) the key specified
by the value list. If apartial key valuelist is specified, all records
matching the partia list are selected. W THis asynonym for Vi A.

A list of values for keyfields. These may be expressed as constants,
variable names or array references. The list is matched with values of
keyfieldsin the order defined in the schema or the order defined in the
index. The value list need not list values for the entire set of keyfields.
Low level keys may be omitted, but not higher levels. For example, if
A, B, and C represent arecord's keyfields, then:

VIA (A B, O | egal

VIA (A | egal

VIA (A B) | ega

VIA (,,0 invalid, needs A and B
VIA (A, QO invalid, needs B

During execution, if avalueisundefined or missing, thevauelist is
treated as if it were terminated with the value previous to the undefined
value.

Note: In earlier versions of the software, undefined values caused an
execution error.

SIR/XS Visual PQL 159

RESTORE REC

RESTORE REC
Re-reads the current record from the database. When arecord block is first executed, a
datarecord isread into memory. Updates to record variables are performed in memory.
The modified record is re-written to the database when the block is exited. A RESTORE
REC cancels all modifications when done before the record is re-written.

RETRY RECORD iSasynonym.

SIR/XS Visual PQL 160

BACKUP

BACKUP
Writes modified database record or CIR to the database.

During aRetrieval Update, updates are performed in memory. The modified CIR or
record is copied to the database when the processing block is exited or before another
CIR or record occurrence is accessed.

BACKUP forces awrite and is very seldom needed.

Thisisonly allowed in retrievalsin update mode.

SIR/XS Visual PQL 161

Processing Database Jour nals

A database journal isarecord of updated records on the database. (A database unload
fileisinidentical format and can also be processed in Visual PQL with these commands.)

Thejournal file consists of alinked set of entries, one entry per update run. Each entry
consists of aset of images of updated records in that run. The images consist of before
and after images of updated records.

The PROCESS JOURNAL command allows you to get information about the various entries
on the journal and to select one or more entries to process. When processing through an
entry, data records are read in sequence from the earliest to the latest. Within the PROCESS
JOURNAL block, a JOURNAL RECORD |'S record_t ype namesthe record that is of interest.
This block is given control when arecord of that typeis read. Within this block, you can
use normal VisualPQL to access the data from the journaled record using the record
variable names. e.g.

PROCESS JOURNAL

. JOURNAL RECORD IS record_type
PQL access to record vari abl es

. END JOURNAL RECORD | S

END PROCESS JOURNAL

Y ou can specify a PROCESS JOURNAL in aprogram and it can run with no database
attached to examine the headers on the file. However a database schema s needed to
interpret the data and to compile any JOURNAL RECORD | S record_t ype commands and
S0 the JOURNAL RECORD | S record_t ype can only appear in aretrieval (you may want
to specify NOAUTOCASE). In aretrieval, the file being processed must match the current
database both at compile time and at execution time.

If you are processing a journal for a case structured database, note that the journal entries
for individual records do not have any non-key common variables; these are on a separate
journal for the CIR. The common vars can only be referred to in a JOURNAL RECORD | S
Cl R block and not within the individual record blocks. Further, the journal holds a
sequential series of records which iswritten as the records are updated. If recordsin a
case are updated but no common vars are updated, then there will not be ajournal entry
for the CIR. If some common vars are updated, the CIR journal entry follows the
individual record journal entries. If only common vars are updated, then there will not be
ajournal entry for the individual record type.

SIR/XS Visual PQL 162

Do not specify aJOURNAL RECORD | S record_t ype block inside another JOURNAL
RECORD | S record_t ype block. Since the block is only entered for the specified record
type, the inner block with a different record type is never executed.

Y ou can compile JOURNAL RECORD | S recor d_t ype blocks which are not physically in
aPROCESS JOURNAL block so they might be in a sub-routine or sub-procedure. If a
JOURNAL RECORD IS record_type block isexecuted that is not in an executing PROCESS
JOURNAL block, it is simply skipped.

SIR/XS Visual PQL 163

PROCESS JOURNAL

PROCESS JOURNAL
[FI LENAME= f nanme_expression | (sr5 is the default)
[FROM = updl evel | START = date [,tine]]

[THRU = updlevel | END = date [,tine]]
[REVERSE]

Return Data

[DATE = varnane] [ENDDATE = varnane]
[TIME = varnane] [ENDTI ME = var nane]

[LEVEL = varnane]
[RECORD = var nane]
[TYPE var name]
[USER var name]

PROCESS JOURNAL, defines ablock of commands that are executed repeatedly, once for
each journal record within the specified range. Some records are headers that identify the
update run and some are data records that contain information about a particular record
type that was updated in the run.

The PROCESS JOURNAL command has two sets of keyword specifications. The first set
specify afilename, which journal entries to process and whether to go from earliest to
latest or in reverse. Selecting entries to process can be on the basis of update levels or
date and time and can specify either start points, end points or both. All of these
specifications are expressions which evaluate to the value to use. Typically these are
specified as a variable name which holds the value.

The second set of specifications name a number of variables that are then used by the
process to return information to the program. If you are selecting multiple entries, then
information may be needed about which entry is being processed. When processing the
potentially multiple records within an entry, information may be needed about the
individual record image that is above and beyond the actual datain the record.

The named file is processed until a header matches the PROCESS JOURNAL specification.
Control isthen passed to the VisualPQL inside the block for each record until a new
header is reached that does not match the specification and the block is exited.

FILENAME = Thejournal fileto process. If not specified, the default is the current

fname_expressi on ;o mg file for the default database (the .sr5 file). Specify the name
as an expression, that is a string variable or other string expression.
If you are specifying a known filename, you can simply encloseit in
quotes e.g.

SIR/XS

FROM = updl| eve

THRU = updl eve

START = date
[,ting]

END = date
[,ting]

REVERSE

DATE = var nane

ENDDATE =
var name

TI ME = var nanme
ENDTI ME =
var nane

LEVEL = varnane

RECORD = var name

TYPE = varname

Visual PQL 164

FI LENAVE = ' COMPANY. UNL'

Thefirst update level to start processing journal entries. If not
specified, processing starts at the first journal entry on thefile.

The last update level to process. If not specified, processing stops
after processing the last journal entry on thefile.

The date and, optionally the time, of the first journal entry to start
processing. Date is an expression that resolvesto a date in format

MM DDI YY. Time, if specified, is an expression that resolvesto atime
in format HHI MM SS. Use either (or neither) a start time or afrom
update level, do not specify both.

The date, and optionally the time, of the last journal entry to process.
Date is an expression that resolves to adate in format MV DDI YY.
Time, if specified, is an expression that resolvesto atime in format
HHI MM SS. Use either (or neither) an end time or athru update level,
do not specify both.

Specifies that the journal is processed in reverse sequence. Thisonly
effects the sequence of entries not the sequence of records presented
within entries. i.e. If the journal holds entries relating to updates that
took the database from update level 5t0 6, 6to 7 and 7 to 8,
REVERSE presents 7 to 8, then 6 to 7 then 5 to 6. This also affects the
way that you specify selection - specify the level/date/time to start
that is higher/later than the one to finish.

Specify avariable name. If specified, this contains the start date of
the journal entry currently being processed.

Specify avariable name. If specified, this contains the end date of
the journal entry currently being processed.

Specify avariable name. If specified, this contains the start time of
the journal entry currently being processed.

Specify avariable name. If specified, this contains the end time of
the journal entry currently being processed.

Specify anumeric variable name. If specified, this contains the
update level of the journal entry currently being processed.

Specify a numeric variable name. If specified, this contains the
record type of the journal data record currently being processed.

Specify anumeric variable name. If specified, this contains the type
of the journal record currently being processed. Thejournal typeisa
positive number for data records and a negative number for journal
headers. Types are:

1 New record written (Thisisthe type of all data on an unload file.)
2 Before existing record updated

3 After existing record updated. Note that these before and after
records are apair and are written toaether.

SIR/XS Visual PQL 165

4 Before Record deleted
-1 Journal Data header

-2 Unload Schema header
-3 Unload Data header

-4 Journal Schema header
-5 User header

USER = varname Specify acharacter variable name capable of holding a 32 byte
name. If specified, returns the name of the user responsible for the
update. Thisistaken from the Sl RUSERif it is specified on start up,
or from the system environment variables (from si r . i ni)
USERNANME Or USER. The username can be set during a session by the
SI RUSER PQL function.

See Processing Journals for more details.

SIR/XS Visual PQL 166

JOURNAL RECORD IS

JOURNAL RECORD IS {nane | number}

Defines arecord block that is entered when the journal records being processed match the
specified record type.If thereisaJOURNAL RECORD | S recor d inside the PROCESS
JOURNAL block and the journal record being processed matches the record type specified
then, when that block is reached, the block is processed. If the journal record does not
match a JOURNAL RECORD | S record that block is skipped.

Specify either arecord number or arecord name. To process the CIR specify either O or
CR

Within the block, you can use normal record variable names to process the data from the
journal record. Y ou can use these for reports or can use them for other database
manipulation. Y ou can nest other blocks e.g. database access, if required.

See Processing Journals for more details.

SIR/XS Visual PQL 167

EXIT JOURNAL IS
EXI T JOURNAL 1S

Terminates processing of the current journal record and exits the journal record is block.

SIR/XS Visual PQL 168

EXIT PROCESS JOURNAL
EXI T PROCESS JOURNAL

Terminates processing of the current journal record and exits the process journal block.

SIR/XS Visual PQL 169

NEXT PROCESS JOURNAL

NEXT PROCESS JOURNAL

Terminates processing of the current journal record and retrieves the next journal record.
Thismay be a datarecord or may be a new header.

NEXT PROCESSHEADER

NEXT PROCESS HEADER

Terminates processing of the current journal set of records and retrieves the next journal
header. If processing alarge journal update or an unload, thisis much more efficient than
processing through every data record looking for the next header.

SIR/XS Visual PQL 170

Concurrent VisualPQL

Use the MsT= parameter when starting a SIR/XS session, or use the SET MASTER
command to use Master and thus use concurrent Visual PQL. Visua PQL programs run
concurrently may update the database concurrently with other products using Master.

MASTER must be running when aclient tries to use it and all retrievals then run through
MASTER until the use of Master isturned off with a CLEAR MASTER command.

Read only retrievals run much faster when run in stand alone mode rather than through
MASTER. Retrievals execute properly in either mode.

Utilitiesignore Master settings and may require exclusive access to the database.
Locking

The Lock = keyword on the database access commands, apply alock to the case or
record being accessed for concurrent operations. The lock type is a numeric value and

may be specified as a constant or as an integer variable. Lock values are:

0 - Null. The lock is not specified and takes the default (exclusive in updates, concurrent
read in retrievals). Same as not specifying alock clause.

1 - Exclusive. Same as 6.

2 - Concurrent Read. Anyone else may read or write this record. This process intends to
read this record. Thisisthe default in retrievals.

3 - Concurrent Write. Anyone else may read or write this record. This process intends to
write this record.

4 - Protected Read. Anyone else may read this record. No-one may write thisrecord. This
process intends to read this record.

5 - Protected Write. Anyone else may read this record. No-one may write this record.
This process intends to write this record.

6 - Exclusive. No-one else may read or write this record. Thisis the default in updates.
Changing L ocks
Once arecord or case has been retrieved, it is possible to alter the locktype held on that

record with the CASELOCK and RECLOCK functions. Specify the new locktype on the
function. If the change is successful, the record is written to the database and re-retrieved

SIR/XS Visual PQL 171

with the new locktype and the function returns a 1. The function returns a zero if the
change could not be made because of other locks on the record.

Lock Conflicts

During concurrent execution, the retrieval may encounter arecord that is locked by
another user.

Requested L ock
Current Lock |Null 1 2 3 4 5
EX Locked |Locked |Locked |Locked |Locked |Locked
CR Read |Locked |Write |Write |Write |Write
cw Read |Locked \Write |Write |Locked |Locked
PR Read |Locked |Write |Locked \Write |Locked
PW Read |Locked |Write |Locked |Locked |Locked

If the case/record is locked (see table above) then:

the current case/record variables are all set to undefined;

aflagis set that can be tested with two functions. SYSTEM 36) for records and
SYSTEM (37) for cases;

control is passed to the first statement in the block.

If the record is not available, the retrieval could wait to try accessing it again by using the
RETRY RECORD Or RESTORE REC command. e.g.

PROCESS RECORD PATI ENT LOCK = 4 | get the patient record
LOOP
| F(SYSTEM'36) = 1) EXIT LOOP | exit if we get the record
WRI TE 'Waiting for | ocked record at 24,5

WAIT 5 | wait half a second
RETRY RECCRD | try to get the record
END LOOP

END PROCESS RECORD

SIR/XS Visual PQL 172

L OOKUP

LOOKUP { RECORD dbnare. recnanme | TABLE tabfile.tabl e}
[FORWARD | BACKWARD]
[GET VARS { ALL|
target _varlist|
|l ocal _varlist = target_varlist}]
[I NDEXED BY i ndexnane]
[RESULT num var nane]
[USI NG casei d, keylist | VIA keylist]
[WHERE (condi tion)]

LOOKUP accesses a single database record or table row if one exists that matches keys
and/or conditions and returns data as specified. The RECORD or TABLE clause must be
specified. Unless further clauses are specified, the command does not achieve anything.
The command may be specified in a PROGRAM RETRI EVAL Oor SUBROUTI NE at any point. It
does not affect other database or table access processes.

RECORD Specify either arecord or table to use for the lookup. Specify the

I[dbnare.] recnanme qarahace or tabfile containing the record or row unless the default.
TABLE The database or tabfile must be connected both at compile time and
[tabfile.]tabl e atexecutiontime.

FORWARD | Specify either FORWARD or BACKWARD to control the direction of
BACKWARD search. FORWARD is the defaullt.

GET VARS ALL | Specify GET VARS clause to pass back valuesif found.

lt iggft oo : 'Sf’t _| The keyword ALL specifies all the matching record or table variables

target varlist areassignedtolocal variablesof the same name.

B A single list of variables creates a set of local variables with the
same names as the database or table variable list. Note that ALL or a
singlelist can only be used where table variables have valid local
variable names.
A list of local variables can be equated to alist of variables from the
target record or table and the local variables are assigned the values
of the database or table variables. The two lists must be of equal
length and the value assignments are performed listwise.

| NDEXED BY Specify an index to use if necessary.

SIR/XS

i ndexnane

RESULT
num var name

USING | VIA

WHERE
(condi tion)

Visual PQL 173

Specify aRESULT numeric variable to return positive for record
found, negative for not found. A negative number is an error code
and associated text can be retrieved with the MSGTXT function.

Specify either Usi NG or VI A to lookup using particular key values.
On a case structured database, not using an index, USI NG specifies
the case key first, then record keys. VI A specifies keysin sequence
either from an index or from the current case. Where akey is
specified, it ismatched exactly. If all keys are not specified, the
subset of records identified by the partial key is used. The values
specified may be constants or expressions. If expressions use
database record variables, these are from the current context not
from the record being looked for.

Specify a WHERE condition to test prospective records (either the
record that matched specified keys exactly or the subset identified
by partial keys). Thefirst to satisfy the condition is returned.
Variables used in the condition clause may either be local or from
the looked up record.

SIR/XS Visual PQL 174

Accessing Tables

There are commands that create table rows, that update table variables and that access
data stored in tables.

The structure and contents of tables and tabfiles is discussed in Tabfiles and Tables.

Tables in tabfiles may be accessed in any Visua PQL routine (program, retrieval or
subroutine). Options on these routine commands affect tabfile and table processing.

Before aroutine can be compiled or executed, the tabfile must be connected.

A program can connect atabfile at execution time with the PQL CONNECT TABFI LE
command.

Table processing differs slightly from database record:

Tables may have indexes that can be used to access the table rows. Accessing
rows through an index determines the sequence in which the rows are retrieved.
The only commands that deal directly with variablesin atable are GET VARS and
PUT VARS. When retrieving arow of atable, move the values of the variablesinto
local variableswith a GET VARS. Make any modifications to the local variables.
To update the values of variablesin atable row, move the local variablesinto the
table row with aPUT VARS. Vaues of key fields of the index being used may not
be updated with PUT VARS.

The names of the variables, indexes and tables may be up to 32 characters long.

Usethe OPEN TABLE and CLCSE TABLE to open and close tables. If these are not used, the
tables are opened automatically when referenced.

Row Processing Commands

Row processing commands access a specific table. These commands define a block of
commands that is delimited with the END ROWcommand. Retrieve required row variables
using the GET VARS command to make the variables available to other Visual PQL
commands within the block. There are two commands that process rows:

PROCESS RoOwretrieves a specific set of rows and updates these if required.
ROW | S (and the variants NEW ROW | S, OLD ROW | S) retrieves or createsasingle
row.

SIR/XS Visual PQL 175

Any updates to the table, including the creation of new rows, require the TUPDATE
keyword either on the RETRI EVAL command or on the row processing command.
Create new rows with aROW I S or NEW ROW | S block. Existing rows may be
accessed with the other types of row blocks.

| ndexes

Tables can have Indexes that may uniquely identify arow or may identify a subset of
rows. Options on the row block commands specify a subset of the rows by specifying an
index and arange of index values. A table may have more than one index and more than
one variable in an index. VisualPQL locates individual rows through the index.

Commandsin ROW blocks

Any command, including other row, case and record block commands, may be used
within arow block. The following commands may only be used in row blocks:

DELETE RowDe etesthe current row.

EXI T ROWTerminates processing of the row block.

NEXT ROWRetrieves the next row in aPROCESS ROWS block.

PREVI OUS ROWREtrieves the previous row in a PROCESS ROWS block.
ROW functions

Specify these functions after the ROW | S block to which they apply:

SYSTEM 27) Returnsalif thelast ROW 1S, NEWROW IS, or OLD ROW | S block was
executed. It returns O (zero) if the last ROW I S block was not executed.
SYSTEM 28) Returnsa 1 if thelast ROwW | S or NEW ROW | S block created a new row.

It returns O (zero) if the block did not create a new row in the table.

SIR/XS Visual PQL 176

OPEN TABLE

OPEN TABLE tabfile_nane.tabl e_name [MODE npde_num]
Opens the specified table.

Specify the tabfile name and table name either as variables that contain the name or as
guoted strings. Ensure that the names have the correct use of upper and lower case |etters
as both are allowed in tabfile and table names and thus no automatic conversions are
done.

The MODE clause specifies whether the table is opened for read or write access. Specify
the mode_numas a numeric variable or constant. 1 specifies READ mode, 2 specifiesWRl TE
mode. The default if MODE is not specified is READ mode.

If the tabfile is not connected or the table does not exist, arun time error isissued.

OPEN TABLE " TESTFI LE". " TABLE1" MODE 2

SIR/XS Visual PQL 177

CLOSE TABLE

CLCSE TABLE tabfil e_nane.tabl e_nane

Closes the specified table.

Specify the tabfile name and table name as variables that contain the name or quoted
strings. Ensure that the names have the correct use of upper and lower case letters as both

are dlowed in tabfile and table names and thus no automatic conversions are done.

See aso the CLOSETABLE option on PROCESS ROWand ROW | S.

SIR/XS Visual PQL 178

PQL CONNECT TABFILE

PQL CONNECT TABFI LE tabfil e_nanme_exp
[FILENAME filenane_exp | attribute_exp]
[MODE {varname | constant}]
[SECURI TY exp, exp, exp, exp]
[1 OSTAT = varnane]

Connects the specified tabfile at execution time. All of the parameters are expressions,
enclose names in quotes if specifying a constant. When assigning string values to
EXPressions, ensure Names are upper case.

tabfil e nane
The internal name of the tabfile. Must be the same name as used when the tabfile was
created.

FI LENAMVE
The name of the operating system fileif different to the internal tabfile name plus the .tbf
suffix.

MODE
Specifiesif the tabfileis opened for READ or WRI TE. |f MODE is not specified, it is
connected for READ. Specify 1 for READ, 2 for WRI TE.

SECURI TY
Specifies Group Name, Group Password, User Name and User Password in this order.

| OSTAT

Specifies avariable to receive the return code generated by the file open operation. A
return code of O (zero) indicates successful connection.

-7001 (Host error message number) indicates that the tabfile could not be opened.

Note: Because this command connects the tabfile at execution time, the tabfile may not
be connected at compile time. If the are subsequent references to the tabfile in this
VisualPQL program then they may not compile. Y ou need to connect the tabfile before
compiling.

SIR/XS Visual PQL 179

PQL DISCONNECT TABFILE

PQL DI SCONNECT TABFI LE tabfil e_name_exp [| OSTAT = var nane]

Disconnects a tabfile.

| OSTAT

Specifies avariable to receive the return code generated by the file close operation. A
return code of O (zero) indicates successful disconnection as specified. -88 (DBMS error
message number) indicates that the tabfile could not be disconnected.

SIR/XS Visual PQL 180

DELETE ROW

DELETE ROW

Deletes the current row. To delete arow, use the DELETE Rowcommand in aROW | S or
PROCESS Rowhblock. This command may only be used in TUPDATE mode.

SIR/XS Visual PQL 181

END ROW

END RON[I 9]
END PROCESS ROW

Terminates ROW | S and PROCESS Rowblocks.
END ROW | S terminates ROW | S blocks.

END PROCESS ROwterminates PROCESS ROW blocks.

SIR/XS Visual PQL 182

EXIT ROW
EXI T ROW

Terminates processing of the row block.

SIR/XS Visual PQL 183

NEXT ROW

NEXT ROW

Retrieves the next row in a PROCESS ROWS block.

SIR/XS Visual PQL 184

PREVIOUS ROW

PREVI QUS ROW

Retrieves the previous row in aPROCESS ROWS block.

SIR/XS

Visual PQL 185

PROCESS ROWS

PROCESS ROA5 [tabfile.]tabl enane
[I NDEXED BY i ndexnane]

— e e — — — —

CLOSETABLE num val]

COUNT = total [,increment [,start]]]
ONETI ME]

REVERSE]

SAMPLE= fraction [, seed]]

UPDATE | TUPDATE]

AFTER (value list)]
AFTER (value list) THRU (value list)]
AFTER (value list) UNTIL(value list)]
FROM (value list)]
FROM (value list) THRU (value list)]
FROM (value list) UNTIL(value list)]
THRU (value list)]
UNTIL (value list)]
VIA (value list)]

Defines arow processing block for the specified table. The commands within the block
(that isterminated with END ROW are executed once for each row accessed. If atabfile
name is not specified, the default tabfile is used.

| NDEXED BY

CLOSETABLE

COUNT

Names the index to use. If thisis not specified, the records are read
sequentially as stored on the table.

Specifies whether the table is closed when the block is exited. A
value of 0 (zero) or undefined |eaves the table open and is the default.
Any other value closes the table. When atableis closed, the memory
used to hold the table is released for other use. Unless memory
problems are encountered, avoid using this option. See also the CLOSE
TABLE command.

Specifies the number of rowsto retrieve. The values for total,
increment and start are integer constants.

t ot al

Specifies the maximum number of rowsto retrieve. If more rows are
requested than are available, the program retrieves all that exist. e.g.
To processthefirst 5 rowsin the table:

PROCESS ROANS TRI ALTF. TABLE1L COUNT = 5
i ncr enent

Spoecifies the "skippina factor" for retrievina rows. An increment of 3

SIR/XS

REVERSE

SAMPLE=fracti on

TUPDATE

ONETI ME

val ue |i st

Visual PQL 186

retrieves every third row. The default increment is 1 (one). e.g. To
access atotal of 5 rows, retrieving every tenth row:

PROCESS ROAS TRI ALTF. TABLE1
COUNT = 5, 10
start
Specifiesthe first row processed. The default start is 1, the first row.

For example, 3 startsretrieving at the third row.
Processes the specified rows of the table in reverse order.

Retrieves arandom sample of rows from the table. The fraction
specifies the portion of casesto select. The number specified isa
decimal number between O (zero) and 1 (one). For each row, a
random number between 0 and 1 is generated. If it is between O and
the specified number, the row is retrieved. Each row is evaluated for
inclusion independently, and therefore the sample may not be exactly
the requested size particularly for tables with a small number of rows.
Sampling is done before COUNT takes effect (i.e. "SAMPLE . 5/ COUNT
2" retrievesthefirst 2 of a 50% sample). e.g. To process 25% of the
rowsin the table:

PROCESS ROAS TRI ALTF. TABLEL
SAMPLE = .25

seed

Specifies the starting seed for the random number generator. A given
seed guarantees that the same set of random numbersis generated. If
aseed is not specified, a default seed is used.

PROCESS ROAS TRI ALTF. TABLEL
SAMPLE =. 25, 13579

Specifies that the program can update data in the rows of this table.
Use the PUT VARS command to update the row from local variables.
TUPDATE need not be specified on the PROCESS ROWs command if it
has aready been specified on the routine command. UPDATE isa
synonym for TUPDATE.

Forces the PROCESS Rowblock to be entered at least once, even if no
rows within the specified range exist. If no rows exist, without this
keyword, the block is skipped. The values of the row variables are set
to undefined if the block is executed and no rows exist.

A list of values expressed as constants, variable names or array
references. Each element in the list represents a value for an index
key field. The values are matched with values of keyfield variablesin
the order defined for the index.

The value list may omit lower level keys. If akey isomitted, no lower
kevs can be specified. Durina execution, if avalue isundefined or

SIR/XS Visual PQL 187

missing, the value list istreated asiif it were terminated with the
keyfield previous to the undefined value. N.B. This differs from the
behaviour in version 2.n. of the software where an execution warning
was reported and the block skipped.

AFTER Specifies the key value to start processing at but not to include. This
selects rows whose key value is greater than the key specified by the
value list. Specify THRU or UNTI L to select arange of keys.

FROM Specifies the key value to start processing and to include. This selects
rows whose key value is greater than or equal to the key specified by
the value list. Specify THRU or UNTI L to select arange of keys.

THRU Specifies the key value to process up to and to include in the retrieved
subset. This selects rows whose key value isless than or equal to the
key specified by the value list. Specify AFTER or FROMtO specify a
beginning row for processing.

UNTI L Specifies the key value to process up to but not to include in the
retrieved subset. This selects rows whose key value isless than the
key specified by the value list. Specify AFTER or FROMtO specify a
beginning row for processing.

VIA Sel ects records whose key value matches (equals) the key specified

by the value list. If apartial key valuelist is specified, all records
matching the partial list are selected. w THis a synonym for vi A.

Using I ndexes

The keywords AFTER, FROM THRU, UNTI L and VI A specify a subset of rows by
specifying values of the keyfields of the table.

If an index has been defined for the table and is referenced on the | NDEXED BY clause,
each row isidentified by its key. The key is a composite of the values of the key fields as
defined for the index.

Visua PQL locates individual rows through the index that pointsto the location of arow
within the tabfile. The value list specified with the keywords on PROCESS Rowsupplies
values of the keys that Visual PQL uses to perform an indexed search for the records. The
valuesin thelist are matched to values of index key variablesin the rows being
processed.

The order of the values determines the keyfields to which the values refer. The keyfields
and their order are passed to the PROCESS RoOwlist from the index definition.

For example, consider atable called REVI Ewthat has variables called JOBCODE, BOSSNAVE
and RATI NG and an index defined as:

CREATE UNI QUE | NDEX REVI DX ON REVI EW (JOBCODE, BOSSNAME)

SIR/XS Visual PQL 188

A PROCESS ROWtO select those records of an employee who was reviewed for job 3 by
Supervisor Jones might be asfollows. The retrieval translates the values 3 and JONES as
being values for keyfields JOBCODE and BOSSNAME:

PROCESS ROW REVI EW | NDEXED BY REVI DX VI A (3,' JONES')

If multiple keyfields are defined for the table index, leading keyfields must be specified.
Trailing keyfields can be omitted, but intervening keyfields must be specified. If any
entriesin the list are out of range or contain missing or undefined values, the valid
portion of the list up to the first undefined value is used. For example, if A, B, and C
represent the keyfields on an index, then:

VIA (A B, O is |egal

VIA (A is |egal

VIA (A B) is |egal

VIA (,,0 is invalid, needs A and B
VIA (A, 0O is invalid, needs B

VIA (, B, O is invalid, needs A

SIR/XS Visual PQL 189

ROW IS

[OLD| NEW] ROWIS [tabfil e_nane.]tabl e_nane
[I NDEXED BY i ndex_name (value list)]
[TUPDATE]
[CLOSETABLE num val ue]
[AT (bl ock, pos)]

The ROW | S commands access a single row from the specified table. In update mode rows
can be modified or created. Specify update mode with the TUPDATE keyword on the ROW
| S or on the routine command.

tabfile_name.tabl e Specifiesthe tableto access. This table must be connected at
hame compile time and at run time.

ROWI S Accesses the row specified by the index key specified on the key
field valuelist. Thisvaluelist isalist of values matched with key
fields of the index named on the | NDEXED BY clause.

When in update mode, anew row is created if it does not exist.
When not in update mode and when an index is not specified, the
first record in the table is accessed.

OLD RONIS Accesses the first row of the table or the row specified by the
I NDEXED BY clause and its key field value list. If the specified row
does not exist, the block is skipped. A new row is never created.

NEW ROV IS Creates anew row. NEW ROW | S isonly allowed in update mode.
If the index specified is a unique index, the block is skipped if the
row exists. If theindex isnot unique or if an | NDEXED BY clause
Isnot used, anew row is created if not restricted by another
unique index on the table.

TUPDATE Allows the table to be updated. This keyword is required on ROV
I S blocks that update the table if TUPDATE is not specified on the
PROGRAMOr RETRI EVAL command. UPDATE iS a synonym.

| NDEXED BY Names the index used for accessing rows.
CLOSETABLE Specifies whether the table is closed when the block is exited. A

value of 0 (zero) or undefined leaves the table open and is the
default. Any other value closes the table. See also the CLOSE
TABLE command.

AT (bl ock, pos) The AT can only be used with the OLD ROW I S construct. It re-
retrieves arow that was previously retrieved from the saved block
and position. These can be got when the row isinitially retrieved
with the SYSTEV functions 18 and 19. This allows the proaram to

SIR/XS Visual PQL 190

exit a block and find the row again even where duplicate keys are
allowed in the index.

SIR/XS Visual PQL 191

ODBC Client

Visua PQL programs can access ODBC data sources (using ODBC) and can directly
access the SIRSQL Server. The Visual PQL program establishes a connection id and a
statement id that are the key identifiers for other operations. It then passes the text of an
SQL query and executes this. The program can enquire as to the columns and rows
available from the query and can get data from each column, stepping through the rows
one at atime.

When using the SIRSQL server to do a query across more than one data source, the
program establishes a connection to the multiple data sources with the same user name
and password.

A program can have multiple connections open at one time. A connection can have
multiple statements. Query results are by connection/statement.

Every command has an ERROR clause that returns a status that indicates success or failure.
The functions return an error code. Further information about the error can be retrieved
by the GETERR function.

SIR/XS Visual PQL 192

CONNECT

CONNECT coni d SERVER nane { DATABASE nane | TABFILE nane}
[USER nane]

[PASSWORD nane]

[PREFI X nane] [UPDATE | READ]

[ERROR errid]

Creates a connection to ODBC or to a SIR SQL server.

coni d iIsanumeric variable that returns an arbitrary number assigned by the system and
subsequently used to identify the connection.

A nanme as used in various parts of the command is a string expressioni.e. astring
variable or a constant enclosed in quotes.

SERVER nane is either the string 0DBC (must be uppercase) or the TCP/IP address of the
server.

DATABASE nane | TABFI LE nane isthe name of the data source as used by ODBC or
the server. Thisis nothing to do with any databases or tabfiles directly connected by
SIR/XS.

USER nane has three possible components. Thefirst is an arbitrary name used to identify
that this connection is one of those associated with asingle 'user' (i.e. this program) if a
guery is done across multiple connections. If atabfile is being connected, the second and
third components are used to specify any group and user name for that tabfile. Separate
multiple components by commas.

Thisistypically blank for non-SIR ODBC sources.

PASSWORD nane has four possible components. The first is a password for the connection
associated with asingle 'user’ (i.e. this program) if a query is done across multiple
connections. If a database is being connected, the second, third and fourth components
are used to specify the database password, the read password and the write password. If a
tabfile is being connected, the second and third components are used to specify any group
and/or user passwords for that tabfile. Separate multiple components by commas.
Thisistypically blank for non-SIR ODBC sources.

PREFI X isthe directory prefix for the SIRSQL server to find the database. If thisis not
fully qualified, the SQLSQL Server takesit to apply from its own local directory
structure. If the server is set to ODBC then the prefix ignored as it is already specified in
the data source setup.

SIR/XS Visual PQL 193

UPDATE | READ allow/disallow SQL statements that update the data source. The default
isread.

ERROR erri d isanumeric variable that returns a status code. A value of zero or less
indicates that the connection failed.

DI SCONNECT coni d [ERROR nane]

Disconnects the connection.

SIR/XS Visual PQL 194

Statement

STATEMENT statid CONNECT coni d [ERROR nane]
Creates an arbitrary statement number for a connection that is subsequently used to

identify the statement.

st ati d iISanumeric variable that returns the statement number.

DELETE STATEMENT statid CONNECT coni d [ERROR nane]

Deletes a statement

PREPARE STATEMENT statid CONNECT conid
{ COWAND t ext _expression | BUFFER buffer_nane}
[ERROR nane]

Sends the text of an SQL statement. This can either be a string expression (e.g. astring
variable in the VisualPQL) that contains text up to 254 characters or it can be the name of
abuffer that contains the text of along SQL statement (up to 4K).

Bl ND STATEMENT statid CONNECT conid (param no, val ue)
[ERROR nane]

SQL queries may contain parametised values, that us the value is not specified directly in

the query but separately viaa Bl ND command. A parameter is shown in the SQL query as
aquestion mark ? eg.

SELECT * FROM EMPLOYEE WHERE | D EQ ?

If astatement has multiple parameters, they are identified positionally, that isthe first
guestion mark is parameter 1, the second 2, etc.

SIR/XS Visual PQL 195

The BI ND supplies values for the parameters. Values may either be numeric or string
expressions. e.g.

BI ND STATEMENT statid CONNECT conid (1,10)
BI ND STATEMENT statid CONNECT conid (2,'John')

Parameters may be bound before or after a statement is prepared. Parameters may also be
bound using the BI NDPARMfunction.

Because the type (numeric or string) of the parameter is not known at compile time, make
sure it matches the data type of the variable that it appliesto. Data for string, categorical
vars, dates and times must be string expressions.

EXECUTE STATEMENT statid CONNECT coni d [ERROR nane]

Thisruns the prepared statement and produces a set of output. This might take some time
depending on the size of the data source and the query.

The output can be examined using the VisualPQL Client/Server functions.

Example

PROGRAM
| NTEGER*4 errid conid statid rnum cnum
STRI NG*20 cnane col val
STRING*80 gtext errstr
CONNECT coni d SERVER ' ODBC
DATABASE ' Conpany'

USER 'me
PASSWORD ' nypwd, COVPANY, HI GH, HI GH
PREFI X v
ERROR errid
STATEMENT statid CONNECT conid ERROR errid

WRI TE errid
PREPARE STATEMENT statid CONNECT conid
COVMAND ' SELECT * FROM ENMPLOYEE'
ERROR errid
WRI TE errid
EXECUTE STATEMENT statid CONNECT conid ERROR errid
WRI TE errid
COWPUTE cnum = COLCOUNT (conid, statid)
COVPUTE r num = ROACOUNT (conid, statid)
WRI TE ' Col umms returned ' cnum' Rows returned ' rnum
FOR I = 1,cnum
COWUTE cnanme = COLNAME (conid,statid,i)
WRI TE cnane
END FOR

SIR/XS Visual PQL 196

SET J (0)
LOOP
COWUTE j = j+1
COVMPUTE res = NEXTROW (coni d, statid)
IF (res LE O) EXIT LOOP
FOR 1 = 1,cnum
| FTHEN (COLTYPE(conid,statid,i) eq 1)
COWUTE col val = COLVALS (conid,statid,j,i)
ELSE
COWPUTE col val = FORMAT (COLVALN (conid,statid,j,i))
ENDI F
WRI TE col val
. END FOR
END LOOP
DELETE STATEMENT statid CONNECT coni d
DI SCONNECT coni d
END PROGRAM

SIR/XS Visual PQL 197

Graphical User Interface

Visua PQL provides the tools to build a portable and flexible graphical user interface for
your applications.

Thetop level of the graphical interface is created by a main program that defines the
main window and menu system including all sub-menus. This receives control when a
menu item is selected and can perform an action directly or can invoke other Visual PQL
programs or SIR/XS commands.

Programs can create dialogs that pass control back to the user and receive control back
when the user takes an action such as pressing a button.

The member SYSTEM START in the system procedure file is the main window program.
Control isreturned to this program until it issuesan EXI T nessage and the system then
stops. (N.B. If adifferent procedure file is specified with the PROC= execution parameter,
it must contain the SYSTEMfamily and START member.)

Any VisualPQL program can output information into the main window (such astitle and
status) and can put text in the window. Programs can also save, print or clear the main
window.

Once the system is running, programs can display and get information through dialogs.
The system has to be active for graphical commands to be executed. Any Visua PQL can
be compiled when the graphical interfaceis not active (e.g. in batch), but running a
program that uses graphical commands without the main window active returns an error.

Predefined programs can be invoked through menus and any program can create and run
with dialogs. A program that creates a dialog remains active until it issuesan EXI T
command.

SIR/XS Visual PQL 198

WINDOW

Window and menu definition commands and functions can only be used in the initial
main program that creates the main window and menus.

W NDOW

Defines the main window and the start of the system.

END W NDOW

Defines the end of the main window and exits the system.

SIR/XS Visual PQL 199

WINDOW TITLE

W NDOW TI TLE t ext _var
Setstitle for main window.

This command can be executed from any program running while the main window is
activei.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 200

WINDOW STATUS

W NDOW STATUS LI NE t ext _var
Puts a message into the status bar in the main window.

This command can be executed from any program running while the main window is
activei.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 201

WINDOW OUTPUT

W NDOW OUTPUT t ext_var [AT CURSOR] [HTM.]

Writes text to the scrolled main window. Each output line is written to the next line in the
window. Specify the keyword AT CURSOR to write to the cursor position (e.g. after
selecting some text). This overwrites any text following the cursor.

Specify the keyword HTM. to write text formatted using a subset of standard html tags.
Supported tags are:

&gquot ;
&anp;
<
> ;

<p>
align
center
ri ght
left
<body>
bgcol or
tran[sparent]
#rrggbb
readonl y
true
FALSE
wr ap
of
ON
<h1>
<h2>
<h3>
<h4>
<h5>
<h6>

<u>
<i>
<sub>
<Sup>

SIR/XS Visual PQL

<bi g>
<smal | >
<code>
<pre>
<center>

 (sane as ul)

col or
#rrggbb
size
[+-In
face
f ont nane

The w NDOW OUTPUT command can be executed from any program running while the
main window is activei.e. It is not restricted to running in the program that defines the

202

main window. Note that output from a standard WRI TE command that does not specify a

filename also goes to the scrolled main window when running without a default output

file.

SIR/XS Visual PQL 203

WINDOW CLEAR

W NDOW CLEAR
Clears the scrolled main window.

This command can be executed from any program running while the main window is
activei.e. It isnot restricted to running in the program that defines the main window.

SIR/XS Visual PQL 204

WINDOW SAVE

W NDOW SAVE fi |l ename
Saves the scrolled contents of main window as afile.

This command can be executed from any program running while the main window is
activei.e. It is not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 205

MENU

MENU nane
Defines a menu block. A subsequent MENU defines a sub-menu. The nameisastring
variable or string constant. To define a mnemonic letter precede it by an &. Thetop level

menu is ahorizontal menu, all sub-menus are vertical menus. All menu definition must
be within the w NDOwbl ock.

END MENU

Defines the end of amenu or sub-menu.

SIR/XS Visual PQL 206

MENUITEM

MENUI TEM i d, nane_var, accel _ch, styl e

Defines amenu item. When thisitem is selected from the menu by the user, thei d is
passed to the processing logic and so it must be unique within al menu items. The name
isastring variable or string constant and can contain an & to define a mnemonic letter.

accel _ch isaone character string variable or string constant containing asingle
accelerator character. Blank means there is no accelerator. A lower case letter is
CTRL+ et t er ; an uppercase letter isCTRL+SHI FT+l et t er . (N.B. This may be machine
specific.)

Styl e isan integer variable - O for not checkable; 1 for checkable. Checkable means that
amenu item can be toggled between two states (checked and unchecked) by the CHECK

| TEMUNCHECK | TEMcommands and tested by function GETMCHK. When amenu item is
checked it has avisual indication (atick) next toit.

Note The main window can be closed by the user without using a Visua PQL menu item.
When this happens (by using a system facility), the system passes a zero astheid. A
message zero must have the same effect as any menu 'Exit' logic and so use zero astheid
for the menu item associated with exit.

SIR/XS Visual PQL 207

MENUSEP

MENUSEP

Defines a menu separator. Thisisonly valid in pulldown menus and appears as a
horizontal line.

SIR/XS Visual PQL 208

TBARITEM

TBARI TEM i d, bitmap, tip_text,style
Defines an item on the tool bar.
Bi t map isthe name of the bitmap that is the image of the toolbar button.

ti p_text isastring variable or constant that is text displayed when the cursor is on the
toolbar. Empty tips are not displayed. These can be defined in any sequence at any
convenient point and the definition sequence determines the sequence across the tool bar.

Styl e isan integer variable - 0 for not checkable; 1 for checkable. Checkable means that
amenu item can be toggled between two states (checked and unchecked) by the CHECK

| TEM, UNCHECK | TEMcommands and tested by function GETMCHK. When an itemis
checked, it has a visual indication (button depressed).

| d isan integer value passed to the message procedure. If theid isthe sameasa
MENUI TEMid both must be the same style (checkable, regular) and they are kept
synchronised. (i.e. checking is on or off for both). It is strongly recommended that al
toolbar items are also menu items.

SIR/XS Visual PQL 209

TBARSEP

TBARSEP

Defines a separator (small space) on the toolbar.

SIR/XS Visual PQL 210

INITIAL

| NI TI AL
Defines an initial message processing block for the menu.

At this point, the system starts and the commandsin the initial block are executed.
Processing from this point on is through the message blocks.

SIR/XS Visual PQL 211

MESSAGE

MESSAGE[S| COWAND i d_var
MESSAGE DROPFI LE string_var
NEXT MESSAGE

EXI T MESSAGE

END MESSAGE[S]
If aparticular type of message processing block is not defined, then messages of that type

are ssimply ignored.

The MESSAGE COMMAND processing block is the normal message block for menus. This
gets control when the user selects alowest level menuitem. Thei d of the selected menu
item is passed to the block in the variable named id_var.

The MESSAGE DROPFI LE string_var receives control if the user 'drags and drops afile
into the main window. The name of thefileis passed to the block inthe st ri ng_var
variable.

NEXT MESSAGE returns control to the user.

EXI T MESSAGE finishes processing and, in amenu, stops the SIR/XS session.

END MESSAGE finishes the definition of a message processing block. If the command is
reached during execution, it returns control to the user.

SIR/XS Visual PQL 212

ENABLE MENUITEM
DISABLE MENUITEM

ENABLE MENUI TEM i d
Dl SABLE MENUI TEM i d

Menu items are enabled by default. These commands enable (make selectable) or disable
(grey out) a specified item.

These commands can be executed from any program running while the main window is
activei.e. they are not restricted to running in the program that defines the main window.

SIR/XS Visual PQL 213

CHECK MENUITEM
UNCHECK MENUITEM

CHECK MENUI TEM i d
UNCHECK MENUI TEM i d

Menu items are unchecked by default. These commands check (tick) or uncheck a
specific item.
These commands can be executed from any program running while the main window is

activei.e. they are not restricted to running in the program that defines the main window.

Thefunction num = GETMCHK (i d) tests the state of amenu or toolbar item. Returns 1 if
checked; 0 if unchecked.

SIR/XS Visual PQL 214

DISPLAY POPUP LIST

DI SPLAY POPUP LI ST [(string_exp,string_exp,..) |
array_nane, no_of _itens]
ANCHOR id | AT row, col
[POSTYPE num exp]
RESPONSE num var nane
[SEPARATCR (n,n...)]

Displays a pop up menu that remains on the screen until the user either selects an item or
clicks at a point off the menu, thus canceling the menu. This command can be issued in
menus, in standard dialogs or in DEDI T dialogs.

(string_exp,...)| The menu consists of alist of entries. These can be defined

array_name, no_of _Itens gher a53ist of string expressionsin parentheses or asa
string array name followed by the number of items to be
selected from the array. The menu is built with one line per
item.

ANCHOR id | AT row, col Themenu iseither positioned relative to the control
identified by the ANCHOR id or at the position specified by the
AT clause. If the ANCHOR id is specified, the position of the
menu is determined by the appearance of the current screen
and the menu is positioned relative to the item referenced by
that id in the current menu or dialog.

PGSTYPE num exp If POSTYPE is specified with a numeric expression that
evaluatesto 1, then values specified in the AT clause are
absolute positions; otherwise, the AT clause specifies
standard row/col based positions.

RESPONSE num varname Specifies a numeric variable that is set to the position in the
menu list of the item selected. If no item is selected, the
response variable is set to -1.

SEPARATOR n, n. .. If specified, displays a menu separator after the nth item(s).

SIR/XS Visual PQL 215

DIALOG

DIALOCG title
END DI ALOG

Definesadiaog. All dialog definition commands and message processing blocks must be
contained in the DI ALOG block. The TI TLE must be specified and is atext variable or
string in quotes that is displayed in the title bar of the dialog.

Diaogs have two parts:-

1) The dialog definition that specifies the dialog controls, their positions and order on the
dialog. Controls are labels, buttons, edit fields, etc. that are the visual items that make up
the dialog and allow the user to interact with the system. Each control isidentified by a
unique numeric id, that is used to reference the control during the execution of the dialog.
Controls that are not referenced during execution (e.g. labels, lines) can use -1 astheid.

The following commands can be used to define dialog controls:

PCSTYPE
BORDERS
BUTTON
CHECK
CHO CE
COvBO
EDI T

I MAGE
LABEL

LI NE

LI ST
RADI O
SLI DER
SPI'N
PROGRESS
TEXT
TREE

2) The dialog message processing routines that can be executed each time a message
event takes place. Eventsinclude pressing a dialog button, pressing a character key in a
text field, selecting an item in amenu etc.

SIR/XS Visual PQL 216

If a message event occurs and there is no message processing routine for that type of
event, it isignored.

The optional | NI TI AL message processing routine is executed before the dialog appears
on the screen.

M essage processing routines can perform any appropriate function including creating a
new sub-dialog and executing standard SIR/XS commands with the EXECUTE DBMS
command.

Control isreturned to the user by a NEXT MESSAGE command or by reaching the end of
the message processing routine (the END MESSAGE command). This retains the dialog on
the screen.

The EXI T MESSAGE command del etes the dialog from the screen and performs any
commands that follow the END DI ALOG command. When the end of the programis
reached, control is returned to any higher level dialog or to the menu system.

If the user exits the dialog using the windowing system (e.g. by clicking on the X button
in Windows), a button message is generated with an id of O (zero) so ensure that MESSAGE
BUTTON 0 exitsthe dialog.

SIR/XS Visual PQL 217

BORDERS

BORDERS
Specifies that the borders of labels, check boxes or radio buttons are displayed. Is only

used when designing a new dialog to establish the positions of controls and to ensure they
do not overlap.

Cannot be switched off once turned on for adialog.

SIR/XS Visual PQL 218

POSTYPE

POSTYPE (0, 1)

Positioning of dialog controls uses a vertical and horizontal system of co-ordinates
starting at 0,0 in the top left. The horizontal units are 1/4 of the average width for the font
being used. The vertical units are by row or by absolute units. The POSTYPE command
changes the vertical units from row to absolute during definition (0 is by row and is the
default; 1 is by absolute units). Absolute vertical units are 1/8 font height. For precise
positioning, dialog metrics can be retrieved with functions.

SIR/XS Visual PQL 219

BUTTON

BUTTON i d, row, col , wi dt h, def aul t, t ext

Defines adiaog button. Thisis arectangle one row deep that can be clicked by the user
to indicate an action to take. This generates a message event to be handled by a message
processing routine.

| Disanumeric variable or constant that identifies the control.

ROwand COL are numeric variables or constants that define the starting position of the
control.

W DTHis anumeric variable or constant that defines the length of the control in horizontal
units.

DEFAULT isanumeric variable or constant. A value of 1 makes this the default button.
TEXT isastring variable or string in quotes and is displayed in the button. To define a
mnemonic letter precede it by an &. The button label is set to this value at definition
time. If you wish to change the label during message processing, use the SET | TEM
command.

SIR/XS Visual PQL 220

CHECK

CHECK id, row, col ,w dt h, t ext

Defines adialog check control. Thisisasmall square box that the user can toggle (turn
on and off) followed by alabdl.

| Disanumeric variable or constant that identifies the control. ROwand COL are numeric
variables or constants that define the starting position of the control.

W DTH isanumeric variable or constant that defines the length of the control in horizontal
units.

TEXT isastring variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET | TEM
command.

Use CHECK | TEMOr UNCHECK | TEMtO set the control and the GETI CHK function to test the
setting (0 for unchecked, 1 for checked).

SIR/XS Visual PQL 221

CHOICE

CHO CE id, row, col,w dth

Defines adiaog choice control. A choice control isabox in asingle row with an
associated pull down list. This contains values set by the program and the user can choose
one of these. A single value from thelist is displayed in the box.

| Disanumeric variable or constant that identifies the control.

ROwand COL are numeric variables or constants that define the starting position of the
control.

W DTHis anumeric variable or constant that defines the length of the control in horizontal
units.

Set the values for the choice control in a message processing block (e.g. inthe I NI TI AL
routine) with the APPEND | TEMor | NSERT | TEMcommands or manipul ate the values with
the REMOVE | TEM REMOVE ALL and SWAP | TEMcommands. Use the GETPOS function to
establish the position of a choice the user has selected or the GETTXT function to return
the text value. If the values are numeric, the GETFLT or GETI NT functions can aso be
used.

By default, thefirst item in the list is displayed in the box. Use the SELECT | TEM
command to select a different item to display.

SIR/XS Visual PQL 222

EDIT

EDI T id, row, col,w dth, pass, read

Definesadialog edit field. Thisisabox on asingle row and can contain text that can be
set by the program and possibly entered by the user. The user can scroll horizontally if
necessary to enter or view more text than can be displayed in the box.

| Disanumeric variable or constant that identifies the control.

ROwand COL are numeric variables or constants that define the starting position of the
control.

W DTHisanumeric variable or constant that defines the length of the control in horizontal
units.

PASS isanumeric variable or constant. If thisis 1 then the edit field is password protected
and the data is not displayed but replaced by asterisks (this may vary on certain operating
systems).

READ is anumeric variable or constant. If thisis 1 then the data in the control is read only
and the user cannot enter data.

Set the value of an edit control with the SET | TEMcommand and retrieve data with the
GETTXT function (if the control is supposed to return numeric values, the GETFLT or
GETI NT functions can aso be used.)

SIR/XS Visual PQL 223

COMBO

conbo id, row, col, width

A ComboBox control is a combination of an edit and a choice control. It is used when
free text can be entered but a set of predefined values also exists.

| Disanumeric variable or constant which identifies the control.

ROwand CoL are numeric variables or constants which define the starting position and
depth of the control in vertical units.

W DTHisanumeric variable or constant which defines the length of the control in
horizontal units.

Y ou can use the same commands and functions as with an edit control or choice control.

SIR/XS Visual PQL 224

SPIN
SPIN id, row, height, col, width

A Soin or Up/Down control displays a numeric edit box with a pair of arrows. The up
arrow increments the value in the edit control and the down arrow decrementsit.

| Disanumeric variable or constant which identifies the control.

ROW HEI GHT and COL are numeric variables or constants which define the starting position
and depth of the control in vertical units.

W DTHis anumeric variable or constant which defines the length of the control in
horizontal units.

SELECT | TEMand SET | TEMwork on the spin control as do the functions SETPOS GETTXT
GETI NT and GETPCS

SIR/XS Visual PQL 225

IMAGE

| MAGE i d, row, hei ght, col , wi dt h, border
Defines arectangular space for a bitmap image.

| Disanumeric variable or constant that identifies the control.

ROW HEI GHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.

W DTH isanumeric variable or constant that defines the length of the control in horizontal
units.

Set the actual bitmap into the control in a message processing block (e.g. inthe I NI TI AL
routine) with the SET | MAGE command.

SIR/XS Visual PQL 226

LABEL

LABEL id, row, col,w dth,text
Definesadiaog label that isasingle row of text.

| Disanumeric variable or constant that identifies the control. If you specify -1 astheid,
the label text cannot be referenced (retrieved or modified) during the execution of the
program.

ROwand COL are numeric variables or constants that define the starting position of the
control.

W DTH isanumeric variable or constant that defines the length of the control in horizontal
units.

TEXT isastring variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET | TEM
command.

SIR/XS Visual PQL 227

LINE

LI NE i d, row, hei ght, col ,wi dth

Draws a box or line. The horizontal linesin abox are offset vertically so that they can
enclose other controls if necessary. However aline (height of 1) takes a standard row
position.

| Disanumeric variable or constant that identifies the control.

ROW HEI GHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.

W DTHis anumeric variable or constant that defines the length of the control in horizontal
units.

SIR/XS Visual PQL 228

LIST

LI ST id, row, hei ght, col ,wi dth, type

Definesadialog list control. A list control isabox in multiple rows. This contains values
set by the program and the user can choose one (or more) of these. Selected items are
highlighted. If there is insufficient room to display all values, the user can scroll
verticaly.

| Disanumeric variable or constant that identifies the control.

ROW HEI GHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.

W DTH isanumeric variable or constant that defines the length of the control in horizontal
units.

TYPE isanumeric variable or constant with the value 0, 1 or 2. These define the type of
selection that the user can make from the list control as follows:-

0 Single - One and only one item can be selected. If the user clicks on a second
item, the first is deselected.

1 Extend - Usually one item but more can be selected. If the user smply clickson
asecond item, the first is deselected. However the user can select multiple items
by using the shift key when selecting.

2 Multiple - Multiple items can be selected. If the user clicks on a second item, it
is selected. If the user clicks on a previously selected item, it is desel ected.

Set the values for the list control in a message processing block (e.g. inthel NI TI AL
routine) with the APPEND | TEMor | NSERT | TEMcommands or manipulate the values with
the REMOVE | TEM REMOVE ALL and SWAP | TEMcommands. Use the GETPOS function to
establish the position of a choice the user has selected and the GETI TXT function to return
the text value. If the values are numeric, the GETI FLT or GETI | NT functions can also be
used.

SIR/XS Visual PQL 229

RADIO

RADI O i d, row, col , wi dt h, t ext

Definesadialog radio control. A radio button isvery similar to a check box except that it
isround and that it may bein agroup. A series of radio definitions without any other type
of control constitutes agroup. In agroup of radio buttons, if the user checks one button,
then automatically any other checked button is unchecked.

| Disanumeric variable or constant that identifies the control.

Rowand caL are numeric variables or constants that define the starting position of the
control.

W DTH is anumeric variable or constant that defines the length of the control in horizontal
units.

TEXT isastring variable or string in quotes. The label is set to this value at definition
time. If you wish to change the label during message processing, use the SET | TEM
command.

Use CHECK | TEMOr UNCHECK | TEMto set the control and the GETI CHK function to test the
setting (0 for unchecked, 1 for checked). If the program checks a radio control in a group,
there is no automatic unchecking of other controls in the group.

SIR/XS Visual PQL 230

SLIDER

SLI DER i d, row, hei ght, col , wi dth

Definesadiaog slider control. A slider control is ahorizontal representation of a
percentage scale (0 to 100) that the user can move l€eft or right to indicate an
increase/decrease. It can be set and moved programmatically.

| Disanumeric variable or constant that identifies the control.

ROwand cOL are numeric variables or constants that define the starting position of the
control.

HEI GHT isanumeric variable or constant that defines the height of the control in vertical
units.

W DTHis anumeric variable or constant that defines the length of the control in horizontal
units.

Set the values for the dlider control in a message processing block (e.g. inthel NI TI AL
routine) with the SET | TEMusing values between 0 and 100. Use the GETPOS function to
establish the position of adider the user has manipul ated.

SIR/XS Visual PQL 231

PROGRESS

A Progress control displays aread only progress meter.

PROGRESS i d, row, height, col, width

| Disanumeric variable or constant which identifies the control.

ROW HEI GHT and COL are numeric variables or constants which define the starting position
and depth of the control in vertical units.

W DTH is anumeric variable or constant which defines the length of the control in
horizontal units.

If Height is greater that width then the bar is drawn vertically, otherwise it is horizontal.

Use the SETRANGE function to define the maximum and minimum values for the bar and
SETPGCS and GETPOS to set and get the position of the progress bar within the control.

The Progress bar is aread only control and does not send any messages to the dialog
program.

SIR/XS Visual PQL 232

TEXT

TEXT id, row, hei ght, col ,w dth, read

Defines amulti-line text control. Thisis arectangular box that can display text and can
allow the user to edit text. The user can scroll horizontally and vertically as necessary.

| Disanumeric variable or constant that identifies the control.

ROW HEI GHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.

W DTH isanumeric variable or constant that defines the length of the control in horizontal
units.

READ is a numeric variable or constant with values 0 or 1. 0 allows the user to edit data; 1
means that the datais read only and cannot be edited.

Set the values for the text control in a message processing block (e.g. inthe | NI TI AL
routine) with the APPEND LI NE or | NSERT TEXT commands. Use the GETLTXT function to
return the text values line by line.

SIR/XS Visual PQL 233

TREE

TREE i d, row, hei ght, col , w dt h, read

Defines atree control that isawindow that displays a hierarchical list of items, such as
the headings in a document, the entriesin an index, or the files and directories on a disk.
Thisisarectangular box that can display text and can allow the user to edit text. The user
can scroll horizontally and vertically as necessary.

| Disanumeric variable or constant that identifies the control.

ROW HEI GHT and COL are numeric variables or constants that define the starting position
and depth of the control in vertical units.

W DTHis anumeric variable or constant that defines the length of the control in horizontal
units.

READ is anumeric variable or constant with values O or 1. O allows the user to edit data; 1
means that the datais read only and cannot be edited.

Set the values for the tree control in a message processing block (e.g. inthel NI TI AL
routine) with the BRANCH function. Use the information passed by the standard message
processing block to identify nodes selected by the user.

The following commands and functions are used with tree controls:
BRANCH Adds a new node to atree. The node is added as a child node of the given parent
node.

BRANCHD Deletes the node from atree.
NBRANCH Returns the number of child nodes of the given node.
BRANCHN Returns the node number of the nth child nodes of the given node.

Thefollowing list commands also work on tree controls. Note that pos is not the ordinal

position of the tree item but the user supplied node number.
SELECT I TEM i d, pos

REMOVE | TEM i d, pos

REMOVE ALL id

GETTXT(i d)

CETI TXT(i d, pos)

GETPOS(i d)

SIR/XS Visual PQL 234

Dialog M essage Processing

I NI TI AL
END | NI TI AL

If you specify an | NI TI AL message processing routine, it is executed before the dialog
appears on the screen. This can be used to populate lists and set theinitial default state of
controls.

MESSAGE[S] type id,argl, arg2

END MESSAGE[9]

Messages are generated by a user action and are passed to the appropriate message
processing block. If there is no appropriate message processing block, the message is
ignored.

TYPE determines which messages are processed by the block and is one of the following
keywords:
ALL, BUTTON, CHECK, CHO CE, EDI T, LI ST, RADI O and TEXT.

If ALL is specified then do not specify any other message processing blocks. Otherwise
you may specify one of each type. Specify either ALL or BUTTON and include appropriate
logic to exit the dialog when a button message with an id of zero is received.

Every message processing routine specifies anumeric variable that is set to thei d of the
control that generated the message.

ar gl and ar g2 are variables on some types of messages. Ensure that the correct number
of variables (none, one or two) are specified for the appropriate message type. The values
in the specified variables are set depending on the type of message processing block and
contain frequently needed data for the type of control. However, this data can aso be
retrieved by functionsif necessary (e.g. when using an ALL message processing routine).
The following describes the arguments passed for each message type:-

ALL id, position,dbl_click Positionisanumeric variable and is set to the position in
alist or choice if appropriate. Dbl_click isanumeric variable that is set to O or 1 where O
means a single mouse click and 1 means a double mouse click.

BUTTON i d Has no further arguments.

CHECK id, check Check isanumeric variablethat is set to O or 1 where O means
unchecked and 1 means checked.

CHO CE id, position Positionisanumeric variable and is set to the position in the
choicelist.

SIR/XS Visual PQL 235

LI ST id, position, dbl_click - Positionisanumeric variable and is set to the
position in thelist. Dbl_click isanumeric variable that is set to 0 or 1 where 0O means a
single mouse click and 1 means a double mouse click.

RADI O i d, check Check isanumeric variablethat is set to 0 or 1 where O means
unchecked and 1 means checked.

EDI T id, hastext Hastextisanumeric variablethat is set to zero if thereisno text in
the control and to a positive value if thereistext.

TEXT id, l|ine,position Lineand position are set to the line and position of the cursor
when text isentered. Lineis set to zero if thereis no text in the control.

Once the appropriate actions have been taken, control is returned to the dialog either by
issuing aNEXT [MESSAGE] command or by reaching the end of the block. Thisdialog
remains active until a message processing block issuesaEXI T [MESSAGE] command that
closesthe dialog.

Other Message Types

There are three message types that are not processed by MESSAGE ALL and you must
specify the message processing block explicitly if you need to process these messages.
The messages are:

MESSAGE FOCUS i d

MESSAGE HELP id

MESSAGE Tl MER

MESSAGE FOCUS This message is generated every time focus moves off adialog item. id

I d istheid of the control moved away from. Use the GETFOCUS function
to return the id of control moved to.

MESSAGE HELP When this message is specified, asmall ? is displayed in the top right

id corner of the dialog. If the user clicks on this, it becomes afloating ?
and the user can position thisto a control to request help. When the
user clicks again, amessage is passed to the MESSAGE HELP block to
display appropriate help for the identified control.

MESSAGE TI MER This message processing block receives messages that are
automatically generated. This could be used to refresh the display of
some image or animation.

Usethe ENABLE TI MER n command to start automatic generation of
timer messages every n tenths of asecond. Use the DI SABLE TI MER
command to stop generation of timer messages.

SIR/XS Visual PQL 236

Dialog Control Commands

The following commands can be used within a message processing block
while adialog is active. i d isanumeric variable or constant. pos isanumeric variable or
constant.

ENABLE | TEM i d
DI SABLE ITEM i d

Enables and disables (greys out) a control.

FOCUS I TEM i d
Sets the focus on to the control.

SHOW I TEM i d
HDE ITEMid

These two commands alter the appearance of the dialog while it is active. Items can be
hidden and other items shown. Items can thus appear to be on different pages within a
dialog or emulate tabbed dialogs.

SET DI ALOG TI TLE string
Sets the dialog title, enabling different pages within adialog to have appropriate titles.

CHECK ITEM i d
UNCHECK I TEM i d

Checks aradio button or check box. If the user checks aradio button, al othersin that
group are unchecked by the system. If aradio button is checked by a program, the
program must uncheck all othersin the group.

SET ITEMid, var

Thevar may be text, integer or floating point and the command sets this value as the
label for label, button, check and radio and as data for edit. Sets a multi-line edit control
to one line containing the value specified in the variable (that may be anull string).

SET | TEM FONT id, bold,italic,underline,size,face

This command changes the appearance of text in alabel, edit, button, list or text box.
Thebol d,italicandunderline can be zero or oneto turn these font attributes off or
on. Thesi ze iszero or +/-1. 1 makes the size of the font larger than current, -1 makes the
size of the font smaller than current and O does not change the size (executing the
command several times with a+/-1 changes the size progressively).

Thef ace isastring and can be either afont name or a colour code. The colour codes are
in the form [#RRGGBB] [/ #RRGGBB] Where the first code sets the foreground colour and
the second code sets the background colour. Specify the colour using exactly six
characters; valid charactersare 0 to 9 and A to F. These are three sets of hexadecimal
specifications of the strength of the red, green and blue components of the colour. Each

SIR/XS Visual PQL 237

setting has a value from 00 to FF. Either component can be omitted completely. Execute
the command twice to specify both afont name and colour. Note that you cannot specify
the colour of a button.

Example: SET | TEM FONT | DTEXT, 1, 0, 0, 0, " #FF0000/ #FFFFFF" sets the font of
| DTEXT to be bold with foreground red and background white.

SELECT I TEM i d, pos
Sdectsan item in alist. (Unselects other item in choice or list if single selection)

CLEAR SELECT I TEM i d, pos
Clears selection.

SELECT ALL id
Selects al itemsin multiple selection.

CLEAR ALL id
Clears selection for al items in multiple selection.

APPEND | TEM i d, var
Adds anitemto choiceor list. Thevar can betext, integer or floating point.

| NSERT | TEM i d, pos, var
Inserts an item at position in choice or list. Thevar can be text, integer or floating point.

SWAP | TEM UP, DOWN i d
Swaps current item in list with one above.

REMOVE | TEM i d, pos
Removes an item from choice or list.

REMOVE ALL id
Removes all items from choice or list.

SET IMAGE id, filenane [type]

Puts an image from graphical file (windows or OS/2 bitmap) into a defined image or
button control. If the type number is specified for an image control it can either be 1 or 2
to centre or resize the image to fit the control.

APPEND LI NE id,var [HTM]

Adds atext line to a multi-line text control. Specify the keyword HTM. to write text
formatted using a subset of standard html tags. Supported tags are listed on the w NDOW
OUTPUT command.

I NSERT TEXT id, var
Inserts text into multi-line control at cursor position. The var can be text, integer or
floating point.

SIR/XS Visual PQL 238

Other GUI Commands

BEEP
I ssues a short beep (displaying an error box beeps automatically).

DI SPLAY TI PBOX str
Pops up amessage. st r isastring variable or string constant in quotes that is the

message to display.

DI SPLAY | NFOBOX str
Displays amessage in adialog with an OK button. st r isastring variable or string
constant in quotes that is the message to display.

DI SPLAY ERRBOX str
Displays an error message. st r isastring variable or string constant in quotes that is the

message to display.

DI SPLAY OKCANBOX str RESPONSE var

Displays a message and asks for an OK or Cancel response. st r isastring variable or
string constant in quotes that is the message to display. var isanumeric variable that
receives 1 (OK) or 0 (Cancel).

DI SPLAY YESNOBOX str RESPONSE var

Displays amessage and asksfor aYes or No response. st r isastring variable or string
constant in quotes that is the message to display. var isanumeric variable that receives 1
(Yes) or 0 (No).

DI SPLAY YNCBOX RESPONSE var
DisplaysaYes, No, Cancel Box. var isanumeric variable that receives 1 (Yes) or O
(No) or -1 (Cancel)

Dl SPLAY TEXTBOX | abel [SECRET] RESPONSE var, mess_text

Displays atext input box. | abel isastring variable or string constant in quotesthat is
displayed as the title on the box. This normally indicates to the user what is being asked
for. var isanumeric variable that receives -1 (Cancel) or length of string. mess_t ext isa
string variable that is set to the value of the text entered by the user. SECRET is a keyword
that means that the text is echoed back as***.

DI SPLAY OPENBOX title,filter, ext,exists RESPONSE var, ness_t xt

Displays afile browse box. tit| e isastring variable or string constant in quotes that
isdisplayed as thetitle of the box.
filter isastring variable or string constant in quotesin format Typejmask e.g. List
files]*.lig)All filesf* .*|
ext isastring variable or string constant in quotes and is the file extension in lower case
without aleading period.

SIR/XS Visual PQL 239

exi st s isanumeric variable or constant. 1 means the file must already exist; 0 allows a
new file to be created; -1 means that the command returns a directory name instead of a
filename.

var isanumeric variable that receives 0 (Cancel) or length of string. ness_t ext isa
string variable that is set to the value of the filename selected or entered by the user.

DI SPLAY SAVEBOX title,filter,ext,overwite RESPONSE var,fil enane
Displaysa Save Asfilebox. ti t1 e isastring variable or string constant in quotes that is

displayed as the title of the box.

filter isastring variable or string constant in quotesin format Typejmask e.g. List

fileg*.ligAll files|*.*|

ext isastring variable or string constant in quotes and is the file extension in lower case

without aleading period.

overw i te isanumeric variable or constant. If thisis 1 then, if the file already exists the

user is prompted for permission to overwrite; if 0, then an existing fileis ssimply

overwritten.

var isanumeric variable that receives 0 (Cancel) or length of string. ness_t ext isa

string variable that is set to the value of the filename selected or entered by the user.

PRINT filenane [DEFAULT] [MARG NS I, r,t,b] [FONT n]
[WRAP| PAGE| TRUNCATE]

Printsatext file. fi | enane isastring variable or string constant in quotes and is the
operating system filename not a SIR/XS internal file attribute.

If the DEFAULT keyword is specified printing commences immediately, otherwise a Print
box to alter print specificationsis displayed.

MARG NS are in mm and defaults are 25 left, right 20 top, bottom.

FONT isin points with a default of 10.
VRAP, PAGE and TRUNCATE specify the way long lines are handled. Wrap splits the long
line over several print lines; Page will print long lines on separate pages and Truncate
will only print that part of the line that will fit on the page.

| N\VOKE DDESI GN fil enane

Invokes the Dialog Designer. fi | enane isastring variable or string constant in quotes
and is the operating system filename not a SIR/XS internal file attribute. The file should
be afile saved by the dialog designer.

SIR/XS Visual PQL 240

DEDIT

DEDI T type,id, argl, arg2
END DEDI T

The DEDI T dialog editor is afull screen dialog that allows the program and user to
interact to place controls of various types and to visually edit these controls. The dialog
visually resizes to accommodate controls. Thisisthe basis for the dialog painter and
PQL Forms painter and can also be used to develop custom painting style applications.

Controls are placed on the dialog through commands and functions rather than through
any definitions. There is no separate message definition command. Control is returned to
this block each time a message is generated.

The command requires the specification of four numeric variables. These variables return
the message type, the id of any control and two arguments, either x (across the screen)
and y (down the screen) co-ordinates or width and height of the control on asize

message.

Message types are as follows:

Val ue Message i
0 Initial
Exit
Key ke
Rclick i
Grl-D
Move i
Resi ze i
Del i
Dbl click i
Fo
10 F5
11 F1(Hel p)
12 Crl-2Z(Undo)

Q
=
«Q
[EEY
Q
=
(o]
N

©CoO~NOUA,WNPE
OO0 O0O00Os XOXOoOO0oOo
OO0 O0OO0OO0OOTKK OK OoOOOo

Initial is sent after the dialog editor window has been created, but before it is made
visible. The program can put the initial set of controlsinto the editor.

SIR/XS Visual PQL 241

Exit is sent when the user triesto close the dialog editor. The program needs to exit the
dialog to actually stop the editor.

Rclick is sent when the user right clicks the mouse. If the mouse is positioned on a
control, the control is selected (if not already selected) and the id is passed, otherwise any
selected control isdeselected and id is set to zero. X and Y position is passed.

Move and Resize are sent as the user moves/resizes a control. The program should just
accept the new position or size and do nothing else. If agroup of controlsis
moved/resized as a single operation, the program receives separate messages for each
control. The program must not interact with the user nor change the editor's control set
while processing this message.

Dblclick is sent when the user quickly left clicks the mouse twice. If the mouseis
positioned on a control, the control is selected and id is passed, otherwise any selected
control is deselected and id is set to zero.

Help is sent when the user presses F1. The application should display appropriate help.

Other messages are passed when the user presses various keys. It is up to the individual
application to assign meanings to these. An application typically usesthe DI SPLAY POPUP
LI ST command to offer the user a set of appropriate actions to take e.g. to insert a control,
to copy acontrol, etc. on given messages. The Rclick passes co-ordinates so is
appropriate for inserting anew control at a given position.

The following keys are enabled during a DEDI T dia og:

Key
ESC No Message - Unselects if one or nore
controls are sel ected
TAB No Message - Sel ects next
Message id argl arg2
Shi ft +Esc Exi t 0 0 0
Esc (None Sel ected) Exi t 0 0 0
Arrow (Sel ected Item(s)) Mve id X y
Shi ft +Arr ow " Resi ze id w h
Ctrl +Arrow " Fi ne Move id X y
Ctrl +Shi ft+Arrow " Fine Resize id w h
Del et e Del ete id 0 0
Return or Space Dbl cl i ck id 0 O (idis zero if
none sel ect ed)
Crl+z Undo 0 0 0
D ctrl-D 0 0 0
F1 Hel p 0 0 0
F2 Relick 0 0 0
F5 F5 0 0 0
F9 F9 0 0 0
I nsert Key 0 0 0

SIR/XS Visual PQL 242

The following keys (or Ctrl-key) have mnemonics to associate with control types

if required

L: [Label] Key 1 0 0
E:[Edit] Key 2 0 0
B: [But t on] Key 3 0 0
K: [Check] Key 4 0 0
R [Radi o Button] Key 5 0 0
C. [Choi ce] Key 6 0 0
M [List] Key 7 0 0
T: [Text] Key 8 0 0
H: [Hori zontal Line] Key 9 0 0
V:[Vertical Line] Key 10 0 0
S: [Box] Key 11 0 0
I:[1mage] Key 12 0 0

Note The dialog editor is not reenterable. Y ou cannot start a second instance while the
first oneisactive.

INSERT DCONTROL

| NSERT DCONTROL id,type, x,y,w, h, text

Inserts acontrol on abDeDI T dialog. Control types are as follows:

LABEL
EDI T
BUTTON
CHECK
RADI O
CHO CE
LI ST
TEXT
HLI NE
VLINE 10
LBOX 11
| MAGE 12

©Co~NoOOR~,WNE

Positioning of dialog edit controls uses a horizontal (x) and vertical(y) system of co-
ordinates starting at 0,0 in the top left. The horizontal units are 1/4 of the average width

SIR/XS Visual PQL 243

for the font being used. The vertical units are 1/8 font height. See POSTYPE to use these
same unitsin standard dial ogs.

Height and width use the same units. Height isirrelevant to control types 1 to 6. Various
controls have minimum height and/or width limits. A height of 12 and awidth of 32 is
sufficient for al control types.

The text is displayed in an appropriate place for the control and should be helpful to the
user to identify the control in some way.

MODIFY DCONTROL

MODI FY DCONTRCL i d, x, Yy, w, h, t ext

Modifies the position, size and text of a control on a DEDI T dialog. The control type
cannot be modified.

MODIFY DCONTROL FONT

MODI FY DCONTROL i d, bold,italic,underline,size,font/col our

Modifies the font of acontrol on aDEDI T dialog. The specifications for the font are the
same as SET | TEM FONT.

REMOVE DCONTROL

REMOVE DCONTRCL id

Removes a control from a DEDI T dialog.

SELECT DCONTROL

SELECT DCONTROL id

SIR/XS Visual PQL 244

Selects a control on aDEDI T dialog. The user can do thisinteractively without program
intervention.

CLEAR DCONTROL

CLEAR DCONTROL id

De-selects a control on aDEDI T dialog. The user can do this interactively without
program intervention.

DEDIT MESSAGE

DEDI T MESSACE t ext _exp

Displays atext message in the message area at the bottom of a DEDI T dialog. The current
position, size and id of any selected control are automatically displayed alongside the
message area.

SIR/XS Visual PQL 245

GRID

GRID title_string_exp
list_of _arrays (1 or 2 dinension)
[HEADERS=(1i st _of _col _headers)]
[RESPONSE = i nt eger _varnane|
array_var nane]
[SI ZE=r ows]
[DI SPLAY=r ow, wi dt h]
[UPDATE | NOUPDATE]

The GRI D command displays datain a spreadsheet format and can be used to display
arrays of data and to accept back changes. The grid is adialog with predefined buttons
and agrid of data. The columns are array variables, the rows are occurrences in the array.
The grid displays very quickly and essentialy has no size limitations beyond those
imposed by processing very large arrays.

title_string_exp A string expression (e.g. 'My Data) that is displayed as the title of

the dialog.
array_nane, A list of array variables of one or two dimensions. Thefirst dimension
array_nane, represents the number of rows of data. If the variable has a second

dimension, thisis taken as multiple columns. The following example
displays 20 rows and 5 columns;

| NTEGER*4 ARRAY MYARRAY (20)

| NTEGER*4 ARRAY MYARRAY1 (20, 4)

GRI D ' Exanpl e' nyarray, nyarrayl

Variables can be any type. Maximum total number of columnsis 256.

HEADERS= A list of string expressions that are used as column headings. The
ﬁggg?'ﬂgg’ | position in the list corresponds to the column. The default heading is

the variable name. The default headings for columns defined by a two
dimensional array isthe variable name for the first occurrence, then the
variable name and subscript value for subsequent occurrences.

RESPONSE = Either asingle integer variable that contains 0,1 or -1 or atwo
;p? de\r/a‘r’ﬁggg”m dimensional array that contains 0,1 or -1 in each element. 0 means
- not updated; 1 means updated; -1 means an error occurred. If rows
are deleted. then the arrav is shorter and response values after the

SIR/XS Visual PQL 246

end of the new array size are set to missing.

Sl ZE=r ows Number of rows available to the user. The default is the first dimension
of the smallest array being used (including any response array). If the
user chooses to insert rows, the dimension of all arrays must be large
enough to allow the insertion.

DI SPLAY = Number of rows and width of visible grid. Rows must be between 10

row, width and 50; width between 50 and 150 characters. The default is 10 rows,
80 characters.

UPDATE | Whether the user is allowed to update the data. The default is UPDATE.

NCUPDATE

SIR/XS Visual PQL 247

PQL Forms Overview

PQLFormsisaset of commands that extend Visual PQL allowing you to create and run
sets of linked, interactive screens for data entry, retrieval and update. A compl ete set of
screensisasingle Visua PQL routine known as a Form.

A Form can be created and maintained completely through the Forms Painter and thisis
the recommended way to develop forms. However, it may be necessary to use PQLForms
commands and this chapter describes the various commands available.

The PQL Forms commands define what variables are on each screen or page of a screen,
how they are displayed and edited, how the screen isto look, and how screens are linked
together. A PQLForm has built in buttons and associated logic to allow the user to
navigate through a set of records and to display, edit and insert data according to the
database description. A developer can use all standard Visua PQL commands as
necessary and these are executed at appropriate placesin the form.

A PQLform can be re-compiled every time it is used or the compiled version of the form
can be saved as an executable member on the procedure file. A PQLForm can aso be
compiled and saved as a sub-routine and can then be executed as part of another
PQLform or standard retrieval. A PQLform isrun in the same way as any other

Visua PQL routine either directly or from a menu.

Once aform has been developed, it can be used by many people for data entry or for
guerying data.

A default form can be generated for a database and can be used directly to view, create,
or delete records.

Form Structure

A form definition consists of a set of commands, each of which may have various
clauses. Normal VisualPQL syntax rules apply.

The form definition starts with the FORMcommand. Thisissimilar to a

RETRI EVAL/ PROGRAM SUBROUTI NE command and can take all relevant clauses as per
those commands plus PQL Forms specific clauses. There are no required clauses on a
FORMcommand. The entire form definition is terminated by the END FORMcommand.

The FORMcommand may be followed by any standard Visual PQL commands, (for
example defining any local variables) and then optionally a CALL SCREEN command that
transfers control to the named screen. The first SCREEN command begins definition of a

SIR/XS Visual PQL 248

screen. All further commands are in a screen definition. Definition of ascreenis
terminated by the END SCREEN command. Commands in the screen define the set of fields
that are displayed; these can be split into a number of separately displayed pages if

necessary.

A form can contain any number of screens. Screens are linked to other screens with the
CALL SCREEN command so that the user or the application can pass control at appropriate
points. A single screen can be called from any number of different screens.

The standard VisualPQL commands up to the first SCREEN or CALL SCREEN command are
executed and then execution starts with the first screen or called screen.

This keyword MENU, RECORD or TABLE on the SCREEN command specifies the type of
screen being defined:-

Menu screens are independent of any database record or table. They can act asa
table of contents with a choice as to where to go next.

Record screens relate to database records. These display data and can be used to
enter new data and modify existing data.

Table screens relate to tables on tabfiles. These display data and can be used to
enter new data and modify existing data.

Within each screen, further commands are used to describe the components of the screen
and their individual behaviour and appearance. The most common of these isthe FI ELD
command. This defines an individual variable, possibly displaying it on the screen
allowing the user to retrieve data and maybe update data. Default formats and edit rules
from the data dictionary are applied automatically. There are clauses on this command to
extend the edit rules and alter the position or format of the data.

A form has a structure similar to the following:

FORM
SCREEN RECORD r ecor d_narne
FI ELD fi el d_nane
FI ELD fi el d_nane
CALL SCREEN record__nanel
END SCREEN
SCREEN RECORD record_nanel
FI ELD fi el d_nane
FI ELD field_nane
. END SCREEN
ENDFORM

A very ssimple form definition (on the example COVPANY database) might be:

form
screen record EMPLOYEE

SIR/XS Visual PQL 249

field id

field nanme

field currpos

call screen OCCUP
end screen

screen record OCCUP
field id

field position
field startsal
end screen

end form

Position on the screen

By default, each defined element is displayed one row down and in the same column as
the previous element. The display position can be explicitly specified with the AT clause
on the command that specifies the element.

The visual size of the screen is determined by the maximum position taken by any
display element plus space for buttons and an area to display messages. Thereis no
absolute maximum row and column size and it is possible to create screens that are too
big to view all at once. Thereis adefault font face, color and size of characters. These
can be altered and specific colorg/sizes/fonts can be used.

Examples

There are anumber of example formsin the family EXAMPLE on the example COVPANY
database. These are named FORMhnnn and contain comments as to the various features
that they illustrate.

Commands

The following commands can only be used in a PQL Form:

FORM

Begins the definition of aform.

SCREEN

Begins a set of commands for a screen.

PAGE

Defines a page of fields within a screen. A page shares data and logic with all
other pagesin that screen. It isameansto display and input data that belong to a
single record or table but istoo large to display on asingle screen. Fields are
automatically split into pages where necessary.

SIR/XS Visual PQL 250

FI ELD
Defines afield. Fields are always within a screen.
GENERATE
Creates a default set of fields from the schema.
CALL SCREEN
Passes control from one screen to another.
ABUTTON
Equivalent to the user pressing a button except the action is taken under program
control.
FBUTTON
Sets the display position of aforms standard button or defines a user button and
the code that is executed when it is pressed.
FDI SPLAY
Displaystext, lines, boxes or images on the screen.
END SCREEN
Defines the end of a previous screen.
END FORM

Defines the end of the form.
Specifying VisualPQL in PQL Forms

There are three general placesin a screen definition where standard VisualPQL can be
used.

Execution Clauses

Some clauses on PQL Forms commands allow standard Visual PQL commands that are
then executed at specific pointsin the form execution. Where VisualPQL commands can
specified as part of a PQLForm clause, enclose the complete set of commands in brackets
() and use a semi-colon ; after acommand to indicate the start of a new command. For
example, the FI ELD command has the EDI TI N and EDI TOUT clauses that allow the
specification of commands to transform data asit is read from the screen or displayed. :

SIR/XS Visual PQL 251

FI ELD SALARY EDI TOUT (fieldout = pformat(salary,'$zzzz.zz'))
EDITIN (if (sbst(fieldin,1,1) eq '$") fieldin =
sbst(fieldin,2,len(fieldin)-1);
sal ary = nunbr(fieldin);
ifthen (salary It 1000);
failnmess = "Salary too | ow ;
failfld 1;
fi)

Condition Clauses

Some clauses on PQL Forms commands allow the specification of conditions. Where a
single, standard VisualPQL condition can specified as part of a PQLForm clause, again
encloseit in brackets (). A condition must eventually resolve to true or false and cannot
extend over multiple commands. For example, the FI ELD command has the | F clause that
determines whether the field is enabled or disabled (greyed out).

FI ELD SALARY pronmpt 'Salary:' |F (EDUC EQ 1)
Intermixed commands

Standard commands can also be intermixed with PQLForms FI ELD commands. The
commands are executed when the user presses ENTER as follows:-

Commands before the first FI ELD command are executed whenever the user
presses Enter.

Commands after a Fl ELD command are executed when a user is positioned on that
field and presses Enter (with avalid value) after the value from the screen is put
into the variable but before the screen is redisplayed.

The VisualPQL can perform any standard Visual PQL function including record access,
calling subroutines, displaying sub-dialogs, etc.

Predefined Variables

To allow easy communication between the predefined PQL Forms logic and user
specified standard Visual PQL, certain predefined variable names have been used:-

FAI LFLD A numeric variable that can be set by commands that check a specific
field asit isentered. A value of zero (0) isthe default and means
accept the field; a positive value means warn the user that the field has
failed validity tests but they have the option to accept it; a negative
value meansthe field has failed validity tests and is not accepted. The
absolute numeric value has no specific meaning. The standard error
message used if FAI LFLD is not zero is number 57 'Failed Edit tests
and this can be overridden by setting avalue in FAI LMVESS.

SIR/XS Visual PQL 252

FAI LMESS A string variable set by commands to the text of the message to display
for atest that fails. If apositive FAI LFLD or FAI LSCR code is set, the
text 'OK to save? is appended to the message.

FAI LSCR A numeric variable set by commands that check record validity.
During field processing or in the WRI TE clause, a zero value accepts the
update and is set by default. A positive value means the user has the
option to accept the update after awarning. A negative value means the
update is not done. The absolute numeric value has no specific
meaning. The standard error message used if FAI LSCRis not zero is
number 110 'Record failed write tests'.
If a SELECT clauseis specified on the SCREEN command, this can set
FAI LSCR to a non-zero value to indicate that the record should be
skipped.

FIELDIN A string variable used as the starting point for data from the screen for
any EDI TI N commands to check or transform when the user presses
Enter on that field.

FI ELDOUT A string variable used as the result of any EDI TOUT commands to
display the field on the screen.

Help

If the user requests help on afield (by clicking on the question mark from the top of the
dialog and positioning it on afield or by pressing F1 on the field), a pop-up box is
displayed with any defined help text. Define help text for afield with the HELP clause
followed parentheses enclosing any standard PQL expression that resolves to a string.
The expression can be a simple string constant in quotes or a concatenated string. To
display multiple linesin the pop up box, concatenate char (13) asaline break character.
For example:

FI ELD Bl RTHDAY

PROWPT 'Date of Birth'

HELP (' Enter as MW DD, YYYY' + char(13) +
"For exanple: May 24, 2001")

If thereis no defined help text for afield, nothing is displayed i.e. no box is popped. If
thereis no help text for any fields, the question mark is suppressed.

Error Messages

Error messages are displayed on the status line with a number in parentheses following
the message. A full listing of the error messages is contained in Messages. Error
messages can be atered to reflect the needs of specific projects by specifying an ERROR
clause for the error message number at any level (form, screen, field). This replaces the
default error message for everything within that level. For example:

SIR/XS Visual PQL 253

FI ELD SSN
ERROR 47 ' Soci al security nunber is in the wong fornmat'

In this example, error message 47 "Not avalid value", is replaced by the message " Socid
security number isin the wrong format" if a user makes an error.

SIR/XS Visual PQL 254

Using PQL Forms

Run PQLForms as per any other Visua PQL program from the SIR/XS menus. Any
database or tabfile required by aform must be connected.

Every PQLForm screen has a set of buttons that take standard actions. These buttons vary
according to the type of screen but all include an Exi t button to return one level.
Typically screens also have various fields for the display and entry of data. Error
messages are displayed at the bottom of the screen.

Each datafield can have up to three visual elements. a prompt, a data area to enter or to
display the data and the set of value labels displayed as a pull down choice list. When a
screenisinitialy displayed, fields may already have datain them or the fields may be
blank waiting for data to be entered or arecord to be retrieved.

To enter datainto afield, type in the dataand press Ent er . To skip over fields, use the
Tab keys or position to afield with the screen cursor using a mouse or other pointing
device. shi ft - Tab goes back afield, Tab goesforward afield. Tab does not process the
data nor execute any Visual PQL associated with the field.

Field Editing Operations

When positioned to a data entry field, edit the contents of the field if necessary. Lef t
Arrowand Ri ght Arr ow position the cursor within the field. The datain afield may be
longer than the display space and is scrolled horizontally as characters are typed or the
arrow keys are used.

Keysto edit the field are the normal keys for the GUI being used. On Windows systems,
Del deletesthe next character, Ctrl - Del deletesthe wholefield; ¢t r 1 - C cuts highlighted
characters, Ct r | - V pastes cut characters, Ct r | - Z restores the previous edit, etc.

Press Ent er to processthe datain afield and move to the next field. If you update afield
but do not press Ent er , the edits have no effect.

Moving from screen to screen

A form often consists of multiple screens, one per record type or table. A screenisa
single logical entity that may be split into several pagesif the data does not fit on asingle
display screen.

If ascreen ison multiple pages, the Page Down button moves to the next page; the Page
Up button moves to the previous page. Thetitle of the screen changes to indicate the
current page.

SIR/XS Visual PQL 255

To call ascreen, press the appropriate button. The Exi t button returnsto the calling
screen. Lower level screens can call other screens and screens may be nested as deeply as

necessary.
Accessing Records and Rows

Key fieldsidentify the record or row and are usually thefirst fields at the top of the
screen. Key fields must be specified on a screen. If the complete set of key fieldsis not
specified, awarning is given at compile time and the missing key fields are automatically
added as the last fields on the screen.

There are buttons to browse through sets of records:-

First retrieves the first record,;

Last retrieves the last record;

Next and Previous go through the set of records one at atime in the specified
direction. If no more records are available in the set, amessage is displayed.

If the screenisatop level screen, (it has not been called by another screen) then the set of
recordsis all of the records of that type in the database or table. However, if ascreenis
called by other screens, then some part of the overall key may have been set by the
calling screen. In this case, those key fields are read-only (cannot be modified) and the
set of recordsis a subset with that specified part of the key. The browse buttons operate
within that set of recordsi.e. The first button retrieves the first matching record in the
subset not the first on thefile.

To locate arecord, enter datain all the key fields. Press Enter at the last key field and the
matching record is then retrieved. If no record matches the exact key, a message that a no
record has been found is displayed. This positions in the set of records even if a partia
key is entered or the key does not exist and the Next or Previous buttons browse from
that point.

Updating a Record

Once arecord is displayed, the data fields can be modified.
At the end of processing a screen (as the user retrieves another record or exits the screen),
if the form alows updates and any of the fields have been updated, the record iswritten
back. This can be done automatically or a message can be displayed asking the user to
confirm that the record should be written.
At any point after updating some field(s), press the WRI TE button to write the changed
data. The WRI TE button isonly displayed if the form allows updates and is only enabled
when some data has been updated.

SIR/XS Visual PQL 256

Prior to writing the data back, the RESET button restores the original data "undoing"
whatever changes were made.

The d ear button clears the screen data fields except for any key values preset by the
CALL to this screen.

Deleting Records

Once arecord is displayed, the DELETE button deletes the record. The DELETE button is
only displayed if the form alows updates and a record has been retrieved. The record is
deleted after asking the user for confirmation.

SIR/XS Visual PQL 257

PQL Forms General Clauses

There are anumber of settings or general clauses that can be specified at different levels
and, if not over-ridden at alower level, apply to al field definitions within the level.
Settings can be specified at the following levels:

FORM
SCREEN
PAGE
FI ELD

A setting at one level acts as the default for all lower levels. For example, the width of
labels could be set on the FORMcommand for the whole form and would apply to every
field on every screen. A setting is overridden for a particular level by specifying the
clause at that level. If a particular setting is not specified at a given level, the current
default applies.

These genera clauses are:-

[NO PROVPT [AT r,c] [WDTH n] [FONT

([NO BOLD| [NO | TALI C] [NOl UNDERLI NE| SI ZE=N| FACE =

' f ont nane' | FGROUND=RRGGBB| BGROUND=RRGGBB)] [' pronpt -
string' | VARDESC| VARLABEL| VARNANE]

[NO DATA [AT r,c] [WDTH n] [FONT

([NO BOLD| [NO | TALI C] [NOl UNDERLI NE| SI ZE=N| FACE
' f ont nanme' | FGROUND=RRGGBB| BGROUND=RRGGBB)]

[NO LABELS [AT r,c] [WDTH n] [FONT

([NQ BOLD| [N | TALI C| [NOl UNDERLI NE| SI ZE=N| FACE
' f ont nanme' | FGROUND=RRGGBB| BGROUND=RRGGBB)]
ERROR nunber 'error text'

Field Elements

There are three main elements to each field as displayed on the screen, from left to
right, the Prompt, the Data and the Label.

By default, a prompt is shown for each field and is the variable label (defined with
aVAR LABEL command). The default position for the prompt is one row down and
in the same column as the previous prompt or other displayed element (text,
button, etc.) and is 18 columns wide. The first prompt isin the top left corner, row
1 column 1.

SIR/XS Visual PQL 258

By default, the data is the same row as the prompt starting one column after the
end of the prompt and is 13 columns wide.

By default, alabel is not displayed. Labels only apply to fields with value labels.
If alabel width is specified, then the label is displayed (if the field has value
labels) immediately after the end of the data field.

The row, column and width of the prompt, data and label can be specified with
common clauses on FORM, SCREEN, PAGE and FI ELD commands. (See below.)
Because the three elements are positioned from left to right relative to each other,
if the prompt position or width is specified, the data and label positions are
automatically adjusted. Similarly, if the data position or width is specified, the
label position is automatically adjusted.

Screen co-ordinates

PQLForms uses a notional set of Row and Column co-ordinates to specify vertical
rows and horizontal columns. The top row is 1 and the leftmost position is column 1.

The absolute row and column size are dependent on the font size being used. A single
row is sufficient to display afield or button. A column approximates to an average
character in the font. The number of rows and columns displayable on a screen depend on
font size and screen resolution.

AT

AT [row] [, colum]

AT isaclause on anumber of commands and alters the starting position for the
specified display element.

Row and column positions can be specified in either absolute or relative terms.

Absolute positions are specified with unsigned integers. For example, AT 5
positions at row 5, AT , 60 positions at column 60, AT 5, 60 positions at row 5
column 60.

Relative positions are specified by prefixing the integer with a plus or minus sign.
Relative positions are relative to the default position for this element. For
example, AT -1, +40 specifies one row higher and forty columnsto the right and
means that the field appears on the same row as the previous field.

An asterisk (*) may be used instead of row or column numbers to indicate the
default maximum row that is the current pagesize (default 20) or default
maximum column (80).

SIR/XS Visual PQL 259

Example AT clauses:

AT 1,1 positionsto the upper left corner.

AT *, 1 positionsat row 20, column 1.

AT , 12 positions at column 12 of the current line.

AT -1, 1 positions at the beginning of the previous line.

AT , +10 positions 10 columns along from the default column position.

If AT is specified on PROVPT, the default DATA and LABEL column positions are
updated. Similarly, if AT is specified on DATA, the default LABEL column position
IS updated.

WIDTH

W DTH n

W DTHis a clause on a number of commands and alters the width for the specified
display element or the width of all lower level fieldsif specified on a higher level
command.

The physical width of any field depends on font sizesin use and, since most fonts
are variable width, there is no exact correspondence between columns and
characters that can be displayed. A column approximates to an average character
in the font. If the displayed data or label iswider than the display width, the user
can scroll horizontally with the right and | eft arrows.

[NO]DATA

[NO DATA [AT r,c] [WDTH n]

Specifies position and/or width of the data areafor fields.

AT
Specifies the starting position (row and column) of data area. If positionis
specified on a higher level command, it appliesto the first field. If AT is
specified on DATA, the default LABEL column position is updated.

W DTH n

Specifies the width of data area. If W DTH is specified on DATA, the default
LABEL column position is updated.

SIR/XS Visual PQL 260

NODATA

Suppresses the data area of the field. This also suppresses any label for the
field.

[NOJLABELS

LABELS [AT R, C] [WDTH n] | NOLABELS

Specifies position and/or width of the label area of afield. Labels correspond to
value labels and are only displayed for fields that have value labels defined.
Labels are displayed as a choice control. Thisisapull down list with al allowed
descriptions and the selected description corresponds to the value in the data field.
Choosing a description updates the value in the data field.

AT
Specifies the starting position (row and column) of label area. If position
is specified on a higher level command, it appliesto the first field.

W DTH n
Specifies that value labels, "n" characters wide, are displayed where
appropriate.

NOLABELS

Suppresses the labels area of the field.

Example: To display 20 characters of value labels next to all datafieldsthat have
value labels, specify:

FORM TESTFORM LABELS W DTH 20

[NO]JPROMPT

[NO PROVPT ['pronpt-string' | VARDESC | VARLABEL | VARNAME] [AT r,c]
[WDTH n]]

Specifies how prompts for fields are displayed. Prompts are left justified and
followed by acolon (:).

NOPROVPT suppresses the prompt. This does not alter the default start position of
the associated data.

pronpt string

SIR/XS Visual PQL 261

Specifies aprompt string for afield. Thisformat can only be used when
specifying prompt defaults on a specific FI ELD not on any higher level
commands.

VARDESC
Specifies that the variable name and label are the prompt.

VARLABEL

Specifies that the variable label isthe prompt. If alabel does not exist, the
variable name isused. Thisis the default.

VARNAME

Specifies that the variable name is the prompt.

AT
Specifies the starting position (row and column) of prompt area. If
position is specified on a higher level command, it appliesto the first field.
If AT is specified on PROVPT, the default DATA and LABEL column positions
are updated.

W DTH n
Sets the width of the prompt. If w DTHis specified on PROVPT, the default
DATA and LABEL column positions are updated.

FONT

FONT ([NO| BOLD| [NO | TALI C| [NO] UNDERLI NE| SI ZE=N| FACE =

' f ont nane' | FGROUND=RRGGBB| BGROUND=RRGGBB) Non-standard fonts can be specified
with the FONT clause wherever a DATA, PROVPT or LABEL clause is specified. Follow the
FONT keyword with a set of specifications enclosed in brackets () using as many as
necessary. Note that some changes alter the amount of space required to display the item
and other positioning specifications may need to be adjusted accordingly. Fonts specified
on higher-level commands alter the default font for al fields within that level. The
various specifications are;

BOLD Display the element as bold.

| TALI C Display the element asitalic.

UNDERLI NE Display the element underlined.

Sl ZE=N Increase or decrease the size of the element. Specify a negative number to
decrease size.

FACE=' f ont name' Display the element using a different font. Specify the name of the

SIR/XS Visual PQL 262

font enclosed in quotes.

FGROUND=RRGGBB Display the element using a different foreground color. Specify the
color using exactly six characters; valid charactersare 0 to 9 and A to F. These are three
sets of hexadecimal specifications of the strength of the red, green and blue components
of the color. Each setting has a value from 00 to FF.

FGROUND=RRGGBB Display the element using a different background color. Specify the
color using exactly six characters; valid charactersare 0 to 9 and A to F. These are three
sets of hexadecimal specifications of the strength of the red, green and blue components
of the color. Each setting has a value from 00 to FF.

For example

SCREEN RECORD EMPLOYEE PROWPT FONT (FACE=' Ariel ')
FI ELD | D PROVPT FONT (BCOLD)

Note that higher level font settings apply to FI ELD definitions and do not alter defaults for
buttons. If you wish to alter the font on a buttons, specify the font on a FBUTTON
command. Currently buttons do not support color but any other font specification can be
used.

ERROR

ERROR nessage_nunber 'error_text'

Specifies alternate text for a message. Each message consists of the
message_number followed by text. See messages for afull list of default

messages.

Error messages apply to the level (FORM SCREEN, PAGE or FI ELD) at which they
are defined and to al lower levels unless overridden by another error message
defined at the lower level.

Example: To change the messages for errors 15 and 47 to "This field must be two
digits." and "Jobcode must be between 10 and 60.", specify:

FI ELD JOBCODE ERROR 15 'This field nust be two digits.'
ERROR 47 ' Jobcode nust be between 10 and 60.°

SIR/XS Visual PQL 263

FORM

FORM
[appropriate standard RETRI EVAL/ PROGRAM SUBROUTI NE cl auses]
[PQLFor ns general clauses]
[AUTO
[CLEAR| NOCLEAR]
[NODATABASE]
[PAGESI ZE r ows]
[PQLFI LE="fil ename']
[SUBROUTI NE nanme [(input_list)]]
[UPDATE]

General Clauses

[NO DATA [AT r,c] [WDTH n]

[NO LABELS [AT r,c] [WDTH n]

[NO PROVPT [AT r,c] [WDTH n] [VARDESC| VARLABEL| VARNANME]
ERROR nunber 'error text'

The FORMcommand is required. All other clauses are optional. All standard RETRI EVAL
clauses can be specified. The PQLForms general clauses can be specified. The following
specific clauses can be specified on the FORM command:

AUTO Specifies that, if updates are allowed, any new records are written to
the database without asking for confirmation. NOAUTO specifies that the
user is asked to confirm that the record should be written and is the
default.

CLEAR Specifiesthat, if updates are allowed, the data fields on the screen are
cleared after writing. NOCLEAR specifies that the datais not cleared and
isthe default.

NODATABASE Specifies that the generated form is a PROGRAMNOt a RETRI EVAL and
can run without being attached to a database.

PAGESI ZE n Specifies the maximum number of data rows in a page of a screen. The
default is 20. (See the PAGE) command.

PQLFILE Specifies that the named fileis created. This contains standard
Visua PQL code (i.e. all PQLForms extensions have been replaced)
that performsidentical functions to the specified form. This can be
used as the basis for a program with other functionality if necessary.

SIR/XS

SUBROUTI NE

UPDATE

Visual PQL 264

Specifies that the routine is compiled and saved as a SUBROUTI NE. The
subroutine name is required and is the name of the compiled
subroutine. The name of the subroutine can be qualified with procedure
file and family prefixes and passwords.

A subroutine may have input parameters. These are positiona
parameters corresponding to the EXECUTE SUBROUTI NE list of
parameters. The parameters are read-only and are local variablesin the
subroutine. These variables must be defined explicitly within the
subroutine.

To pass key variablesto a SCREEN defined in a FORM
SUBROUTINE you would use:

FORM SUBRCUTI NE nane (keys)
CALL SCREEN scrname USI NG (keys)
. SCREEN RECORD scr nane

Specifies that record and table screens allow the reading and writing of
records. By default, screens do not update the database or tabfile.
Individual screens can be set to allow/disallow updates. Local variables
can be input regardless of update status.

SIR/XS Visual PQL 265

SCREEN

SCREEN

{MENU nane |
RECORD nane [/ dat abase.record][| NDEXED BY i ndexnane | |
TABLE nane [/tabfile.table] [|INDEXED BY indexnane]}

[AUTQ NQAUTO

[CLEAR| NOCLEAR|

[DELETE (pql code)]

[INITIAL (pql code)]

[NOBUTTON]

[PAGESI ZE r ows]

[READ (pgl code)]

[SELECT (pgl code)]

[TITLE (pgl code)]

[UPDATE | NOUPDATE]

[WRITE (pql code)]

General Clauses

[NO DATA [AT r,c] [WDTH n]

[NO LABELS [AT r,c] [WDTH n]

[NO PROWPT [AT r,c] [WDTH n] [VARDESC| VARLABEL| VARNANME]
ERROR nunber 'error text'

A SCREEN command starts a screen definition. The screen name must be specified and
must be unique within aform. Thisis displayed as the title of the screen. The name must
be avalid SIR/XS name.

Follow the screen command with further commands to display fields, to control the
appearance of the screen or to link to other screens. The sequence of the fields within the
screen definition determines the sequence for moving to the next field. If the display
element positioning clauses are used, this may not necessarily be the order of fields as
they appear on the screen.

End the set of commands for a screen with the END SCREEN command.

There are three screen types defined by the MENU, RECORD or TABLE keyword.

MENU

SIR/XS Visual PQL 266

Within a menu screen, FI ELD commands can only refer to local variables. Menu screens
may consist smply of buttons offering choices as to which screens to go to or can display
fields or allow data entry providing that these are local variables.

The AUTO, READ, SELECT and WRI TE clauses do not apply to MENU screens.
RECORD

Record screens access and display one record at atime. Within a screen, commands can
reference any variable from that record plus any local variables. Commands can also
reference common variables in a case structured database.

Specify the screen name and, optionally, the name of the record and the name of the
database. If arecord name is not specified, the screen name must be the record name. If a
database name is not specified, the current database is the defaullt.

The name cl R can be used as a record name on a case structured database to refer to the
common information record.

An index can be specified for arecord and the index variables are treated as the key
fields. Only one index can be specified for arecord screen. If anindex is not specified,
the record is processed by any case and record keys.

The same record type can be associated with multiple screen definitions in the same form
definition to alow different ways of viewing the same data. Each screen name must be
unique.

When control is passed to arecord screen, arecord can be retrieved or a new entry
created. The user can enter the key fields to locate the record, or can find the appropriate
record with FI RST, LAST, NEXT or PREVI OUS buttons. The record or set of recordsto
retrieve can be determined by clauses on the CALL SCREEN command.

TABLE

Table screens access and display one row at atime. Within a screen, commands can
reference any variable from that table plus any local variables.

Specify the screen name and, optionally, the name of the table and the name of the
tabfile. If atableis not specified, the screen name must be the table name. If atabfileis
not specified, the default tabfile is used.

Anindex can be specified for atable and the index variables are treated as the key fields.
Only one index can be specified for atable screen. If an index is not specified, the tableis
processed sequentially.

SIR/XS

Visual PQL 267

The same table can be associated with multiple screens in the same form definition to
allow different ways of viewing the same data. Each screen name must be unique.

When control is passed to atable screen, arow can be retrieved or a new entry created.
The user can enter the key fields to locate the row, or can find the appropriate row with
FI RST, LAST, NEXT or PREVI OUS buttons. The row or set of rowsto retrieve can be
determined by clauses on the CALL SCREEN command.

Clauses

AUTQ| NOAUTO

CLEAR

DELETE (PQL
Code)

I NI TIAL (PQL
Code)

PAGESI ZE n

Specifies that any new records are written to the database without
asking for confirmation. NOAUTO specifies that the user is asked to
confirm that the record should be written and is the defauilt.

Specifies that, if updates are allowed, the data fields on the screen are
cleared after writing. Thisisthe default if not set at the FORMIevel.
NOCLEAR specifies that the data is not cleared.

Specify VisualPQL code, enclosed in brackets, that is executed when a
record or row is about to be deleted. The record (row) is deleted by the
user pressing the DELETE button. The VisualPQL can be any set of
commands. The executed code can create and display sub-dialogs or
error boxes as necessary. Separate multiple commands with a semi-
colon';'.

The DELETE commands can set avalue in FAI LSCR to warn the user and
reject the delete.

Example: To test that when employee has a current position, tell the
user and ask whether to accept the delete:

SCREEN RECORD EMPLOYEE
DELETE (1 FTHEN (EXI STS(CURRPCS)) ;

COVPUTE FAI LSCR = 15;

COWUTE FAI LMESS=' Enpl oyee in current
position';

Fl)

Specifies VisuaPQL code, enclosed in brackets, that is executed when
the user first initiates a screen before anything is displayed, before the
first command in the screen and before arecord is accessed. The set of
Visual PQL to execute is any set of commands but should not display
any sub-dialogs or any other graphical elements. Separate multiple
commands with a semi-colon ';'.
Example: To set thelocal variable | NTI MVE to the current time when
the screen is accessed, specify:

SCREEN RECORD EMPLOYEE | NI TI AL (COVPUTE | NTI ME=ENOW 0))

Spoecifies the maximum number of rows in a page of a screen. The

SIR/XS

READ (PQL
Code)
SELECT (PQL
Code)

TITLE (PQ
Code)

[NO UPDATE

Visual PQL 268

default is 20. If the number of rows on a screen exceeds this size, then
anew page is created automatically. When a screen has multiple pages,
each page is displayed separately, the Page Up/Page Down buttons are
displayed and the screen title contains the current page number. There
isno limit to the number of pages on one single screen. All pages
within a screen are the same size visually. All pages within a screen are
one logical entity i.e. record and table screens access one single record
or row. Page breaks can be set specifically at given points by the PAGE
command.

Specify VisualPQL code, enclosed in brackets, that is executed when
the user reads arecord. The code is executed when a new record is
retrieved, after the record is read and before the datais displayed. The
Visua PQL can be any set of commands. The executed code can create
and display sub-dialogs or error boxes as necessary. Separate multiple
commands with a semi-colon ';'.

Specify VisualPQL code, enclosed in brackets, that is executed as the
user moves to another record. The code is executed after arecord is
read and selects whether this record is wanted. The Visual PQL can be
any set of commands that eventually set FAI LSCR to non-zero if the
record is not wanted. Records that are not wanted are skipped and the
user is presented with the next wanted record. Separate multiple
commands with a semi-colon ';'.

Example: To ignore records where salary is under 2500, specify:

SCREEN RECORD EMPLOYEE SELECT (I F (SALARY LT 2500)
FAILSCR = -1)

Specify VisualPQL code, enclosed in brackets, that is executed as each
page of the dialog is displayed and constructs the title of the dialog. If
this clause is specified, the default title is suppressed. The Visual PQL
can be any set of commands that issue a SET DI ALOG TI TLE command
to set thetitle. There are two predefined variables available. PAGENOIS
the current page number; PAGES is the total pages. These are both
string variables so can easily be included in atitle expression if
required. Separate multiple commands with a semi-colon ';'.

Example: To put out atitle, specify:

SCREEN RECORD EMPLOYEE TI TLE (SET DI ALOG TI TLE ' Peopl e
Page ' + PAGENO + ' of ' + PAGES)

UPDATE specifies that this record or table screen allows the reading and
writing of records. NOUPDATE specifies that this record or table screen
does not allow the reading and writing of records. By default, screens
are set to the update status of the form. Local variables can be input

SIR/XS Visual PQL 269

regardless of update status.

WRITE (PQL Specify VisualPQL code, enclosed in brackets, that is executed when a
Code) record or row iswritten. If data has been updated, the record (row) is
written directly by the user pressing the WRI TE button or when the user
retrieves anew record (row) on this screen or exits from the screen.
The code is executed after all local variables have been set to the
values displayed on the screen. This VisualPQL Code could be used to
implement ACCEPT/REJECT RECORD and REQUI RED field functionality
from old style SIRForms.
The VisualPQL can be any set of commands. The executed code can
create and display sub-dialogs or error boxes as necessary. Separate
multiple commands with a semi-colon ;'
The WRl TE commands can check the validity of arecord (row) and can
set avalue in FAI LSCR to warn the user and reject the write.
Example: To compute the sum of VARL, VAR2 and VAR3, specify:

SCREEN RECORD EMPLOYEE WRI TE (COVWPUTE TOTAL = VARL + VAR2
+ VAR3)

To test that when salary is greater than 5,000, tell the user and ask
whether to accept the record:

SCREEN RECORD EMPLOYEE
WRI TE (I FTHEN (SALARY GT 5000)
COVPUTE FAI LSCR = 15;
COVPUTE FAI LMESS=' Sal ary over $5, 000" ;
Fl)

Caution

Since there isonly one fail flag for a screen, if you want to test multiple conditions then

you should ensure that you don't reset an error status to awarning. For example:

WRI TE (

| FTHEN (EXI STS(NAME) EQ 0) SET FAILSCR(-1); SET FAILMESS ("You MJUST
enter a nane"); ENDIF;

| FTHEN (EXI STS(DOB) EQ 0) SET FAILSCR(1) ; SET FAILMESS ("You really
shoul d enter a birthday"); ENDIF;

| FTHEN (EXI STS(GENDER) EQ 0) SET FAILSCR(1) ; SET FAILMESS ("You really
shoul d enter a gender"); ENDIF;

)

If none of the variables above is entered then only one warning about gender is displayed.

However, with:

WRI TE (

SET FAILMESS ("You really should enter:")

| FTHEN (EXI STS(DOB) EQ 0) SET FAILSCR(1) ; COWPUTE FAI LMESS
FAI LMESS + "Birthday; "); END F;

| FTHEN (EXI STS(GENDER) EQ 0) SET FAILSCR(1) ; COWPUTE FAI LMESS
FAI LMESS + "Gender; "); ENDF;

| ETHEN (FXI STS(NAMF) FO 0V SFT FAII SCR(-1): SFT FAI I MFSS (" Yo MIST

SIR/XS Visual PQL 270

enter a nane"); ENDIF;

)
If none of the variables above is entered then an error message on name is displayed.

Then on the next write attempt the warning message about birthday and gender is
displayed.

END SCREEN

END SCREEN

A screen must be ended with the END SCREEN command. There are no further clauses on
the command.

SIR/XS Visual PQL 271

PAGE

PAGE
[PAGESI ZE rows]

General Clauses:

[NO DATA [AT r,c] [WDTH n]

[NO LABELS [AT r,c] [WDTH n]

[NO PROVPT [AT r,c] [WDTH n] [VARDESC| VARLABEL| VARNANME]
ERROR nunber 'error text'

The PAGE command specifies that a new page begins at this point. A new page resets the
row position of the next display item to the top of the screen. When a screen has multiple
pages, the Page Up/Page Down buttons are displayed and the screen title contains the
current page number.

Thereisno limit to the number of pages on one single screen. All pages within a screen
are one logical entity related to one single record or row.

If any of the general clauses are specified, these apply to the first field on the page.

Clauses
PAGESI ZE n

Specifies the maximum number of datarowsin a page of a screen. The default is
20. If the screen has less rows than the page size, then the dialog is the minimum
size to accommodate the visual elements.

If the row placement for afield or button exceeds the page size, anew pageis
created, the row is reset to the default row for a page (1 if not specified) and
subsequent display elements are included in this new page. Lines, boxes and other
elements specified with FDI SPLAY commands do not trigger automatic paging.

The page size is checked after any positioning clauses are processed and a new
page is created if necessary.

PAGESI ZE n can be specified on the FORMcommand, on a SCREEN command or on
aPAGE command.

SIR/XS Visual PQL 272

FIELD

FI ELD vari abl e_nane

[EDITIN (pgl comrands)]

[EDI TQUT (pgl commrands)]

[HELP (hel p string expression)]
[IF (pgl condition)]

[NOECHO)
[READONLY]
[TYPE [INTEGER | STRING | REAL | DATE | TIMg]

General Clauses:

[NO DATA [AT r,c] [WDTH n]

[NO LABELS [AT r,c] [WDTH n]

[NO PROWPT [AT r,c] [WDTH n] [' pronpt-
string' | VARDESC| VARLABEL| VARNANME]

ERROR nunber 'error text'

The FI ELD command displays the current value of a variable on the screen and provides
the capability to invoke standard PQL for editing and validating data val ues.

The only required clause on the FI ELD command is the name of the variable. A FI ELD
command without any clauses displays the data at a default position on the screen using
the dictionary definitions to control the prompt, the data format and the edit rules.

The FI ELD command is used in record screens for record variables, in table screens for
table columns and in any screen for local variables. The same variable can be referenced
by multiple FI ELD commands on a screen.

The sequence of the FI ELD commands determines the sequence followed by the cursor on
the screen when the user presses Enter or uses the Tab keys. Field commands do not have
to correspond to the sequence of variablesin arow or record. All of the fields on arecord
or table do not have to be on a screen.

The FI ELD command creates visual entriesin the screen together with appropriate logic
to display and modify the data.

If Visua PQL commands are interspersed with FI ELD commands then:

SIR/XS Visual PQL 273

Commands specified before the first FI ELD in a screen are executed whenever the
user presses Enter;

Commands specified after aFl ELD are executed when a user is positioned on that
field and presses Enter.

Clauses

EDI TIN (pgl conmands)

Specify VisualPQL code, enclosed in brackets, that takes the value from the
predefined string variable FI ELDI N and sets the value of the record, row or local
variable. Separate multiple commands with a semi-colon ';'.

Example: A field (named SSN) for entering a social security number may be
displayed with hyphens. The following removes these:

FIELD ssn EDI TIN (COVPUTE ssn = REPLACE (fieldin," -
"' LEN(fiel din),1,0))

If the EDI TI N commands check the validity of afield, set avalue in a predefined
variable, FAI LFLD, to indicate what is to be done with the field. A value of zero
(0) isthe default and means accept the field; a positive value means warn the user
that the field has failed validity tests but they can choose to accept it; a negative
value meansthe field has failed validity tests and is not accepted. The standard
error message is number 57 'Failed Edit tests. Set the value of the string variable
FAI LMESS to display adifferent message for the test that fails. If a positive error
codeis set, the text 'OK to save? is appended to the message.

The EDI TI Ncommands completely replace the default field assignment and
validation so your PQL code must assign a value to the variable named in the
FI ELD vari abl e_nane.

EDI TOUT (PQL commands)

Specify VisualPQL code, enclosed in brackets, that alters the way thefield is
displayed. The specified commands are typically afunction or set of functions
that use the field as the input and create the predefined string output field

FI ELDOUT. The form then uses this as the field displayed in the screen. Separate
multiple commands with a semi-colon *;'.

Example: To display asocial security number in the format ddd-dd-dddd:

SIR/XS Visual PQL 274

FI ELD SSN EDI TQUT (conpute fieldout = edit (ssn,"AMA-AA_ANNATYY

N.B. If the user just edits the field then any characters added or taken out by this
process become the input. This must be dealt with, either by the user clearing the
field when editing or by appropriate logic in the EDI TI N command.

HELP (string expression)

Specifies atext string or expression to display when help for a specific field is
requested by the user. When the user requests help, the string expression is
resolved and displayed as a pop up box.

IF (pgl condition)

Controls whether afield is enabled or disabled (greyed out). All fields are
normally enabled. The specified condition is tested every time the datain the
screen is updated and the field is enabled if the condition is true otherwiseit is
disabled.

Example: Allow monthly rent to be entered if OANHOME is not equal to 1.

FI ELD MONRENT | F (OANHOME NE 1)

NOECHO

Makes the field protected so the user does not see the charactersin thefield as
they are entered or displayed. Depending on the specific operating system, the
characters are replaced with asterisks or blanks.

READONLY

Specifiesthat the field is read only. It cannot be modified nor can new data be
entered.

TYPE

When specifying local variables on aFI ELD command, the TYPE specifies the type
of field being referenced. By default, thetypeis| NTEGER. Thelocal variable
should also be defined using standard PQL in the beginning of the form.

SIR/XS Visual PQL 275

CALL SCREEN

CALL SCREEN screen_nane

[AT r,c]

[AUTO [(pgl condition)]]

[HELP (hel p expression)]
[IF (pgl condition)]

[ONCALL FI RST | LAST]

[PROVPT ' prompt ']

[USI NG (caseid, *| key,...)
[VIA (* | key,...)

[WDTH n]

The CALL SCREEN command passes control from one screen to another, typically when
the user presses the button generated by the command.

The only required clause on the CALL SCREEN isthe called screen_name. This references
another screen that isincluded in thisform. If the name is a non-standard name, ensure
that it exactly matches the screen name as specified on the called screen.

The default prompt is the called screen name.
A called screen can be blank for the user to enter any keys and retrieve any records or
rows, or the key fields can be passed by this command to control the set of records or

rows that the called screen isto reference.

The datafields on the called screen may be blank for the user to select the required screen
(first or last in the set) or arecord or row may be retrieved automatically with an ONCALL
FI RST Or ONCALL LAST clause.

Clauses
AT

Specifies where on the screen the CALL SCREEN button is displayed.
AUTO [(pgl condition)]

Specifies that screen is called automatically when the user presses Enter on the
previous field. The AUTO option suppresses the display of a button and does not
affect the position of subsequent fields. The visual clauses AT, PROVPT and W DTH

SIR/XS Visual PQL 276

thus have no effect. If the user needs a normal button to choose to call the screen,
specify asecond CALL command.

Specify aVisua PQL condition (enclosed in brackets) that controls whether the
screen iscalled at this point. If the condition is true, the screen is called.

HELP (string expression)

Specifies a string expression to display when help is requested by the user when
positioned at the CALL SCREEN field.

If the user requests help, the string is displayed as a pop up box.
I F (PQL. condition)

Controls whether the button is enabled or disabled (greyed out). Call buttons are
normally enabled. The condition is tested every time the dataiin the screenis

updated and the button is enabled if the condition is true, otherwise it is disabled.
CALL NEXTOFKI N | F (RELATIVE = 1)

ONCALL FI RST | LAST

Specifies that either the FI RST or LAST record in the set of records available to the
called screenisretrieved and displayed automatically.

PROVPT 'string'

Specifies the label on the button. If a PROVPT is not specified, the name of the
called screen is used.

USING (list,...)

Specifies alist of variables that the called screen uses as keysto adifferent case
on a case structured database. Specify the caseid value, optionally followed by
the key field values.

Example: To call ascreen | NDEX that references a new case with acase id of -1
and two other keyfields:

CALL | NDEX USI NG (-1, NAME, | D)

VIA (list, ...)

Specifiesalist of variables that the called screen uses as keys. Use VI A to select
records within this case, to access other records on a caseless database or to
access a SCREEN TABLE. Do not specify acaseid on the vi A clause. Do not use
USI NGand VI A on the same CALL SCREEN command.

SIR/XS Visual PQL 277

If aCALL iswithin a SCREEN RECORD the key specification for either UsI NGor VI A
keys can contain an asterisk (*) indicating that the key fields of the record from
the current screen are used. The asterisk can be preceded or followed by other
values. If an asterisk is preceded by values, these values are used positionally. e.g.
If arecord has three keys, the expression (1,*) means use '1' as the first key and
take the second and third key values from this record.

If an asterisk isfollowed by values, the values are used positionally after the
number of keysin the calling record. e.g. If the current record has three keys, the
expression (*,1) means use the first, second and third keys from this record and
use'1' asthe fourth key (presumably the record being called has at |east four
keys).

If one or more of the lower level keys are omitted, all records with the specified
keys are accessible.

If aCALL iswithin a SCREEN RECORD and a USI NG or VI A clause is not specified,
al higher level keys are passed automatically that is equivalent to USI NG (*) or
VIA (*).

W DTH n

Specifies the width of the CALL SCREEN button.

A CALL SCREEN can appear before the first SCREEN block and is typically used to pass
on keys that have been sent to the FORM routine:

FORM SUBROUTI NE name (keys)
CALL SCREEN scrnane USI NG (keys)
. SCREEN RECORD scr name

SIR/XS Visual PQL 278

FDISPLAY

FDI SPLAY
[AT r,c]
[[DRAW[HEIGHT N [I MAGE (bitrmap_fil ename_expressi on) [BORDER]]]
[TEXT (text_expression) [FONT
([NQ BOLD| [N | TALI C| [NOl UNDERLI NE| SI ZE=N| FACE =
' font nane' | FGROUND=RRGGBB| BGROUND=RRGGBB)]]
[WDTH n]

The FDI SPLAY command puts a line, box, image or text on the screen. Expressions are
evaluated and the display updated when the screen is refreshed (e.g. when anew record is
read).

AT

Specifies a start position. The default start position is the current default PROVPT
start position.

DRAW

Creates vertical and horizontal lines and boxes. Lines and boxes avoid the exact
placements of fields so the same row column references as fields can be used to
group sets of fields visually. Lines and boxes do not ater the default position for
the next field.

W DTH specifies how wide the line/box is and HEl GHT specifies how high the
line/box is. If the height is zero (or unspecified), a horizontal line is produced. If
the width is zero (or unspecified), avertical lineis produced. If both width and
height are specified, abox is produced.

The | MAGE clause specifies an expression that is resolved to the name of a bitmap
file and the image from thisis displayed in the box. The BORDER clause puts a
border around the image. If an image is displayed, the default position is updated
by the height of the image.

TEXT

Specifies atext expression that is resolved and displayed as text. The default
position is updated by the standard single row. The w DTH specifies how wide the

SIR/XS Visual PQL 279

text is. The default isthe current default PROVPT width. A FONT sub-clause can be
specified as per the FONT sub-clause on the standard PROVPT clause.

For example:

FDI SPLAY TEXT (' Wl conme to the Administration Systeni) FONT (UNDERLI NE
S| ZE=2) W DTH 30
FDI SPLAY TEXT (' Pl ease contact ext. 123 for help') at +2,+5

FDI SPLAY TEXT (NAME) AT 4,30 W DTH 20 | Displays value in variable
NAME

FDI SPLAY DRAW W DTH 80 | Draws line for 80 colums
FDI SPLAY AT 1,1 DRAWHEI GHT 10 WDTH 50 | Draws box

FDI SPLAY DRAW HEI GHT 5 W DTH 40 | MAGE (' LOGO. BMP') | Displays inage
fromfile

SIR/XS Visual PQL 280

ABUTTON

ABUTTON {FIRST | LAST | NEXT | PREVIOUS | EXIT | RESET | WRITE | CLEAR
| DELETE | PAGEDOWN | PAGEUP}

The ABUTTON command is equivalent to the user pressing a button, except that it is done
under program control. This command can be used anywhere in-line VisualPQL can be
used but cannot be used in clauses on other PQLFor ns commands.

FI RST

Getsthefirst record for this screen.

LAST

Gets the last record for this screen.

NEXT

Gets the next record for this screen.

PREVI QUS

Gets the previous record for this screen.

EXIT

Returns to the calling screen or exits from the form if thisis the top screen.

RESET

Restores all the record or table variables to their original values.

VRI TE

Writes the record or row to the database or tabfile.

CLEAR

Clears dll datafields and any key fields that are not preset by a calling screen.

DELETE

Deletes the record or row from the database or tabfile.

SIR/XS Visual PQL 281

PAGEDOVWN

Displays the next page of the screen.

PAGEUP

Displays the previous page of the screen.

SIR/XS Visual PQL 282

FBUTTON

FBUTTON [button_name | ACTION (pgl comands)]
[AT r,c]
[1Dn]
[I1F (pgl condition)]
[PROVPT ' ']
[REMOVE]
[WDTH wj

The FBUTTON command alters the visual appearance (position, width and prompt
text) of a system button or defines a user button.

button_name

Use one of the following button names to identify a system button:
FI RST| LAST| PREVI QUS| NEXT| EXI T| CLEAR|
STATUS| WRI TE| RESET| DELETE| PAGEUP| PAGEDOMN|

ACTI ON (pql comands)

Specifies a user button. Specify PQL commands to execute when pressed.

AT

Specifies the starting position (row and column) of the button.

Specifies an internal id for an ACTI ON button. Only specify thisif you need to
refer to this button in some other VisualPQL code in the form, for example, to
enable or disable the button under particular circumstances rather than using the
| F clause on this command. The specified ID isanumber from 13t0 99 (1 - 12
are used for standard buttons). Theid for a button is normally automatically
allocated by the compiler and is one greater than the previous button. If you
specify anid, it must not conflict with any previously automatically allocated id,
and, if there are subsequent automatically allocated ids, there must be sufficient
numbers available under 100 to allocate. It is strongly recommended that, if itis
necessary to specify anid for abutton, you specify ids for all user buttons on that
form.

IF (pqgl condition)

SIR/XS Visual PQL 283

Controls whether a button is enabled or disabled (greyed out). An action button is
normally enabled. System buttons may be enabled and disabled depending on
other processing. The specified condition is tested every time the datain the
screen is updated and the button is enabled if the condition is true otherwiseit is

disabled.
PROWPT ' string'

Specifies the label on the button. If a user button is created and PROVPT is
not specified, the prompt is USER BUTTON plus a unique number.

REMOVE

Removes (deletes) the button from the screen.

W DTH

Specifies the width of the button.

SIR/XS Visual PQL 284

GENERATE

GENERATE EXCLUDE | | NCLUDE
SCREENS (screennanes, ...)
VARS (variable, ...)

General Clauses:

[NO DATA [AT r,c] [WDTH n]

[NO LABELS [AT r,c] [WDTH n]

[NO PROVPT [AT r,c] [WDTH n] [VARDESC| VARLABEL| VARNANE]
ERROR nunber 'error text'

The GENERATE command in record or table screens uses the record or table schemato
give the equivalent of default FI ELD commands for every field. GENERATE in amenu
screen produces the equivalent of adefault CALL SCREEN to every previously defined
record or table screen.

The EXCLUDE and | NCLUDE clauses specify fields that are affected or not by the GENERATE
and allow specific FI ELD commands to be combined with a GENERATE command. When a
FI ELD command is specified for a variable, the variable should be EXCLUDED from the
GENERATE otherwise it appears on the screen twice.

The general clauses on the GENERATE command apply to all fields generated by the
command. The DATA, LABELS and PROVPT AT clause refers to the row position of the first
field.

EXCLUDE

Omits screens or variables from the GENERATE. When EXCLUDE is specified, any
variable not EXCLUDED is | NCLUDED automatically (similarly any screen not
EXCLUDED in a generated menu is 1 NCLUDED).

I NCLUDE

Includes screens or variablesin the GENERATE. When | NCLUDE is specified, any
variables (or screensin menus) not | NCLUDE are EXCLUDEd.

SIR/XS Visual PQL 285

SCREENS

Specifies screen names to | NCLUDE or EXCLUDE in menu screens.

VARS
Specifiesalist of named variables.

For example, to specify particular options for three fields and then bring in all the
remaining fields in the EMPLOYEE record:

SCREEN RECORD EMPLOYEE/ COVPANY. EMPLOYEE

TEXT 'This is the Denographic Record' AT +2

FI ELD | D PROVPT ' Enpl oyee ID:'

FI ELD NAVE PROVPT ' Nane of Enpl oyee’

FI ELD SSN EDI TOUT (COVPUTE FI ELDOUT
EDI TIN (COVPUTE SSN

", ,LEN(FIELDIN), 1, 0))

GENERATE EXCLUDE VARS (1 D NAME SSN)

END SCREEN

EDI T (SSN, "/\/\I_/\/_/\/\/\/\"))
REPLACE (FIELDIN, ' -

Old Forms

Thereis an existing SirForms system that is a stand-alone system that uses a character
style interface. While the PQL Forms commands are different in design and operation,
they can resemble old Forms. If comparing the PQL Forms commands with old Forms
note that:-

1. Thebasic syntax in PQLFormsis VisualPQL and conformsto VisualPQL rulesin
terms of names, continuation rules, etc. For example, command continuation lines
are recognised by a blank in the first position.

2. Some old Forms command names have been used but others conflicted with
existing Visual PQL commandsin that the same command syntax does different
things in the two systems. PQL Forms commands avoid these conflicts e.g. CALL
SCREEN resembles the old Forms CALL; SCREEN RECORD resembles old Forms
RECORD.

3. VisuaPQL aready contained commands that were equivalent to various functions
in old Forms e.g. to define variables, to compute values, etc.

4. Theintentionisto use standard VisualPQL wherever possible so many options on
commands take standard Visual PQL replacing specific old Forms keywords e.g.
the EDI TOUT and EDI TI N clauses on the FI ELD command (instead of keywords
such as DSPEDI T); the I NI TI AL, READ and WRI TE clauses on the SCREEN command
(instead of keywords such as ACCEPT).

5. TheVisuaPQL LOOKUP command approximates this command in old Forms.

6. TheHelp system operatesfor fields. If screen level help isrequired, use the
FBUTTON ACTI ONto define a help button.

7. The concept of groups of fields has been dropped.

SIR/XS Visual PQL 286

8. The concept of separate forms based permissions has been dropped. The same
security loging/permissions as for any use of VisualPQL now apply.

SIR/XS Visual PQL 287

PQLFormsError Messages

Nunber Text

27 Record not found

30 Record Witten

37 Case not found

38 No nore records

47 Not a valid val ue

57 Failed Edit tests

110 Record failed wite tests

118 Record was nodified - OK to save ?

SIR/XS Visual PQL 288

POL Server

The SIR/XS PQL Server is an executable that allows another standard SIR/XS session to
connect to it as a client and to transmit commands to the server, execute those commands
remotely and retrieve output. Thisis done with a set of PQL functions. The PQL Server
must be started to enable clients to communicate to it across the network. The client
processes do not require any access to files or databases that are local to the server and
the two processes (client/server) may be using different hardware/operating systems e.g.
client on windows, server on Unix.

From the client point of view processing is as follows:

Client logs on to server and establishes a connection. Thisisthe current
connection used by all subsequent server functions until another logon/logoff.
Client sends any number of lines of text including SIR commands. Control
usually passes back without any actual transmission taking place - transmission
only happens when maximum message size is reached.

Client starts execution of previously sent commands. Any commands not yet sent
to the server are transmitted, any settings or output from a previous execution
from the same client are re-initialised, the commands are run and a completion
codeisreturned at which point any output is waiting on the server. Commands
can include all SIR commands and can use procedures, etc. Note that commands
must include connecting any databases/tabfiles/procedure files needed each time
commands are submitted and executed. There are no saved settings between
executions.

The process may read/write files, update databases and generally do anything that
abatch run of SIR could do.

The client may choose to wait for the execution to finish or to carry on processing
locally and subsequently test to find if the execution has completed successfully.
Client gets count of number of lines of output and can then get each text line or
skip over unwanted lines. Lines are physically passed by the server in groups. If
skipping lines and the lines have not yet been transmitted, they are skipped on the
server. Lines once returned or skipped are no longer available. The client can get
acount of the number of lines available at any point.

Client can repeat the process.

Client logs off (specify a blank server) when finished.

eg.

program

SIR/XS Visual PQL 289

conpute rc = serlog (' TONYDELL: 4000',"'")
wite rc
compute x = sersend (' PROGRAM)
compute x = sersend (' WRI TE "HELLO WORLD"')
compute x = sersend (' END PROGRAM)
conpute rc = serexec (1)
wite 'rc =" rc
conmpute olines = serlines(x)
wite 'lines ' olines
for i=1,o0lines
conmpute line = serget (0)
wite line
r of
conpute rc = serlog ('',"'")
end program

See the Environment documentation for running the PQL Server.

SIR/XS Visual PQL 290

Buffers

Buffers can be used to enter and edit unlimited amounts of text with minimal
programming.

A program can invoke the editor, either the SIR editor or a system editor depending on
parameter settings. Once the editor isinvoked , control does not return to the program
until the user exits the editor. The editor can use buffersto store data and there are
Visual PQL commands to create, read and manipulate the contents of a buffer. The
commands are:

CLEAR BUFFER, CREATE BUFFER and DELETE BUFFER that affect the whole buffer.
DELETE LI NE, GET LI NE, I NSERT LI NE and PUT LI NE that affect individual lines
in the buffer.

EDI T BUFFER that passes control to the editor for the user to edit the buffer.
Control returnsto the program when the user exits the editor.

SIR/XS Visual PQL 291

CLEAR BUFFER

CLEAR BUFFER buf f er _nane_exp

Removes al the lines currently in the specified buffer. Specify an existing buffer name as
a string constant in quotes or as a string variable.

SIR/XS Visual PQL 292

CREATE BUFFER

CREATE BUFFER buf f er _nane_exp

Creates a new, empty buffer. Specify the buffer name as a string constant in quotes or as
astring variable.

If the buffer already exists, awarning is issued but the program continues.

SIR/XS Visual PQL 293

DELETE BUFFER
DELETE BUFFER buffer _nanme_exp
Removes the specified buffer. Specify the buffer name as a string constant in quotes or as

astring variable. If the buffer does not exist the command isignored and no warning is
issued.

SIR/XS Visual PQL

DELETE LINE IN BUFFER

DELETE LI NE | N BUFFER buffer_name_exp
NUVBERED num val ue

Removes a specific line in the buffer. Subsequent lines are renumbered. Specify the
buffer name as a string constant in quotes or as a string variable.

294

SIR/XS Visual PQL 295

EDIT BUFFER

EDI T BUFFER buffer_name_exp

Invokes the SIR editor or the external editor with the specified buffer. Specify the buffer
name as a string constant in quotes or as a string variable.

SIR/XS Visual PQL 296

GET LINE FROM BUFFER

GET LI NE FROM BUFFER buf f er _name
NUVBERED num val ue
I NTO string_var

Transfers a copy of the specified lineto a string variable. If the line number is greater
than the number of linesin the buffer, the string is set to undefined.

SIR/XS Visual PQL 297

INSERT LINE INTO BUFFER

| NSERT LI NE | NTO BUFFER buf f er _nane
NUVBERED num val ue
FROM string_var

Inserts anew line into the buffer before the specified line number. That isthe old line
with the specified line number becomes that line number+1 and the new line becomes the
specified line number.

SIR/XS Visual PQL 298

PUT LINE TO BUFFER

PUT LI NE TO BUFFER buffer_nane
NUVBERED num val ue
FROM string_var

Replaces the specified linein the specified buffer with the contents of the string argument

specified.

Example of Buffer Manipulation

The following example uses a bibliographic database in which abstracts of books are
stored. The case identifier variable is BOOKI D, a string. A record type called ABSTRACT has
an integer keyfield called LI NENUMand an 80 character string variable called TEXTLI NE.
Each line of text of the abstract is stored as arecord in this record type.

The retrieval has two parts, the control structure of the program and a set of
subprocedures that do the various program tasks such as looking for existing abstracts,
editing the abstract and saving the abstract in the database.

RETRI EVAL UPDATE NOAUTOCASE
STRING * 80 TMPLI NE
I NTEGER * 2 EDI TEND
CREATE BUFFER ' ABSTRACT'
LOOP
structure
ERASE SCREEN
DI SPLAY TEXTBOX ' Enter Book ID:'
RESPONSE RESVAR, BOCKI D
| FTHEN(RESVAR LE 0)
DELETE BUFFER ' ABSTRACT'
EXIT RETRI EVAL
ELSE
EXECUTE SUBPROCEDURE GETBOCOK
EXECUTE SUBPROCEDURE EDI TBOCK
| FTHEN(EDI TEND = 299)
CLEAR BUFFER ' ABSTRACT
NEXT LOOP
ELSElI F(EDI TEND = 277)
EXECUTE SUBPRCCEDURE SAVEBOOK
NEXT LOOP
END | F
. END IF
END LOOP

C* -- subprocedure definitions

| create a buffer for editing
| begi nning of contro

| clear the screen
| get book id

if no bookid is provided
get rid of buffer

end the retrieva

| if we have a bookid
get existing abstract
edit the abstract

i f user cancelled
enpty the buffer

go for another book
if execute buffer
store text

go for another book

| end of control structure

SIR/XS

SUBPROCEDURE GETBOCOK
OLD CASE | S BOOKI D
PROCESS REC ABSTRACT

I NSERT LI NE | NTO BUFFER ' ABSTRACT'

Visual PQL

299

| gets abstract from db

| load lines into buffer

nunbered LI NENUM from TEXTLI NE

END REC
END CASE
| FTHEN (SYSTEM 14) = 0)

DI SPLAY ERRBOX ' New Book'
ENDI F
END SUBPROCEDURE

SUBPROCEDURE EDI TBOOK
EDI T BUFFER ' ABSTRACT'
END SUBPROCEDURE

SUBPROCEDURE SAVEBOOK
CASE |'S BOOKI D
SET LI NENUM (0)
LOOP
LI NENUM = LI NENUM + 1
GET LI NE FROM BUFFER ' ABSTRACT'
| FTHEN(EXI STS(TMPLI NE) =1)
RECORD | S ABSTRACT (LI NENUM)
PUT VARS TEXTLINE = TMPLI NE
END REC
ELSEI F(EXI STS(TMPLI NE) =0)
PROCESS REC ABSTRACT
FROM (LI NENUM)
DELETE REC
END REC
EXI T LOOP
. END IF
END LOOP
CLEAR BUFFER ' ABSTRACT'
END CASE
END SUBPROCEDURE
END RETRI EVAL

| if book is not in database

| give a message
| edit the abstract

| store text in database
| create or access book
| initialise line counter

go thru lines in buffer

nunbered LI NENUM into TMPLI NE
| if (end of buffer)
| go thru any other records

| and delete the record

SIR/XS Visual PQL 300

DISPLAY WDL

DI SPLAY WDL {'string_val' | varnane]

Sends either the specified string constant (in quotes) or the contents of the specified
variable to the OutputHandler callback routine in SirAPI. The variable must be a string.

SIR/XS Visual PQL 301

Functions

Functions return a single numeric or string value derived from the arguments of the
function. Arguments are separated by commas. In general, the functions can appear in
any string, arithmetic or logical expression in aVisualPQL program. Schema functions
can be used in a PROGRAM The functions are listed by type and in alphabetical order with
afull explanation of each.

List of Functions by Type
Function types are:

Trigonometric
Mathematical
Argument List
Across record

Date and Time
Global and Parameter
String

Concurrent
Miscellaneous
Session

Schema & Database
Tabfile & Table
Read/Write

Dialog and Menu
Client/Server

CaGl

For adetailed description of all functions, see the aphabetic list of functions.

SIR/XS Visual PQL

Trigonometric Functions
ACOS arc cosine (also ARCOS)
ASI Narc sine (also ARSI N)
ATAN arc tangent

COSs trigonometric cosine

SI N trigonometric sine

TAN trigonometric tangent

TANH hyperbolic tangent

302

SIR/XS Visual PQL 303

Mathematical Functions

ABS absolute value
Al NT truncation (also TRUNC)
ALOG natural logarithm (also LN or LOG)
ALOGL0 base 10 logarithm (also LGL0 or LOGL0)
AMOD remainder of division (also MOD)
EXP exponentiation (base e)
FEQ compares two floating point numbers within atolerance
RAND random uniform number (0-1) (also RANF)
REAL4 returns the REAL* 4 value of a REAL* 8 number
RND rounding
SI GN transfer of sign
SQRT sguare root

TRUNC truncates least significant digits

SIR/XS Visual PQL 304

Argument List Functions
CNT count the number of arguments that are not missing
FST return the first argument that is not missing
LST return the last argument that is not missing
MAX return the largest argument that is not missing
MEAN compute the mean of the arguments that are not missing
M N return the smallest argument that is not missing
STDEV compute the standard deviation of non missing values

SuMcompute the sum of all arguments that are not missing

SIR/XS Visual PQL 305

Across Record Functions

The "across records’ functions may only appear in PROCESS REC or PROCESS Rowblocks
. They compute aresult based on a single variable in each record or row processed in the
PROCESS REC or PROCESS Rowblock. They ignore values that are missing or undefined.
Records that contain missing or undefined values are not counted nor are they used in the
calculation of averages. Some of these functions can be used with string values, others do
not apply to strings. If afunction returns a string (e.g. as a maximum), a maximum of 32
characters are returned.

CNTR, FSTR, LSTR, MAXR, M NR, CNT, FST, LST, MAX, M N can all be used with strings.
MEANR, STDEVR, SUMR, AMOD, MEAN, STDVEV, SUMare only relevant to numeric values.

CNTR counts the number of times the variable occurs.

FSTRreturns the first value processed.

LSTRreturns the last value processed

MAXR returns the largest value processed

MEANR computes the average value (SUMR / CNTR)

M NR returns the smallest value

STDEVR computes the standard deviation

SUMR computes the sum of values

SIR/XS Visual PQL

Date and Time Functions
CDATE converts a date string to a date integer
CTI ME converts atime string to atime integer
DATEC converts a date integer to a date string
DATET returns the current date and time as a string
DTTOTS takes a date and atime integer and returns a Timestamp as area* 8 value
JULC converts a date integer to a date string
JULN converts day, month, and year to a date integer
Nowreturns the current time as atime integer
TI ME converts hours, minutes, and seconds to a time integer
TI MEC converts atime integer to atime string
TODAY returns current date as a date integer
TSDODT takes a Timestamp and returns the date component as an integer

TsborMmtakes a Timestamp and returns the time component as an integer

306

SIR/XS Visual PQL 307

Global Functions

DGLOBAL Deletes aglobal variable

DSN Returns a full filename associated with an attribute
GLOBALN Assigns a numeric value to aglobal variable
GLOBALS Assigns a string value to aglobal variable

NARG Returns a numeric argument from run parameter list
NGLOBAL Returns the value of aglobal numeric variable
SARG Returns a string argument from run parameter list

SGLOBAL Returnsthe value of aglobal string variable

SIR/XS Visual PQL 308

String Functions

CAPI TAL Capitalisesthefirst letter of each word in string

CATI NT Returns an integer value of a categorical variable

CATSTR Returns a string value of a categorical variable

CENTER Returns a centred string

CHAR Returns the character with the numeric internal value

COMVA Separates thousands by inserting commas in a numeric string
EDI T Applies editing template to a data string

FI LL Replaces blanksin string

FORMAT Converts a number to a string

| CHAR Returns the numeric internal value of a character

LEN Returns the string length in characters

LONER Converts al charactersin string to lower case

NUMBR Converts a string to a number

PACK Returns the string with compressed blanks

PAD Pads a string with character to specified length

PATTERN Returns whether a pattern isfound in a string

PFORMAT Converts a number to aformatted string

Pl CTURE Validates a string by comparing to a picture

REGEXP Searches a string for a substring specified by aregular expression

REGREP Searches a string for a substring specified by aregular expression and replaces it
according to a second regular expression

SIR/XS Visual PQL

REPLACE Replaces substrings with a specified string
REVERSE Returns a string spelled backwards

SBST Returns a substring of a string

SGET Returns the value of a string variable

SPREAD Returns a string with single blanks between characters
SPUT Stores string value in string variable

SRST Searches for a substring

SUBSTR Returns a substring of a string

TRI MTrims trailing blanks from a string

TRI M. Deletes blanks from the left

TRI MR Déletes blanks from the left and the right
TRI MR Deletes blanks from the right

UPPER Converts all characters of string to upper case

VARGET Gets value from string variable where variable name is an expression.

VARPUT Puts value into string variable where variable name is an expression.

309

SIR/XS Visual PQL 310

Concurrent Functions

CASELOCK Change lock type for and retry current CIR (also CI RLOCK)
RECLOCK Change lock type for and retry current record

SYSTEM 36) Whether current record islocked

SYSTEM 37) Whether current CIR islocked

SYSTEM 38) Whether a concurrent session using Master

SYSTEM 39) Returns the ordinal humber of the default database. No Database returns 0

SIR/XS Visual PQL

Miscellaneous Functions

ARRDI MN Returns number of dimensions of alocal array variable
ARRDI MST Returns start value of adimension of alocal array variable
ARRDI M5Z Returns number of entries of adimension of alocal array variable
CLI PAPP Adds text to the clipboard

CLI PGET Gets text from the clipboard

CLI PLI NE Gets count of linesin the clipboard

CLI PSET Clears the clipboard and adds text to the clipboard
CRYPTKEY Sets the key for the encryption functions.

DECRYPT Decrypts an encrypted string.

ENCRYPT Encrypts a string.

ERROR Displays a text message error box

EXI STS Indicatesif variable exists (not missing or undefined)

311

EXTERN Invokes user-supplied external functions returning a numeric value. These must

bein the EXTERN dII.

EXTERNS Invokes user-supplied external functions returning a string value. These must be

in the EXTERN dlI.

HELP Invokes the Help system

M SNUM Returns the "type" of missing or undefined value
M SSI NG Returns the original value for missing values
MBGTXT Returns the error message text for an error number
PROGRESS Controls the display of a progress bar

SEEK Sets a position on an open file.

SIR/XS Visual PQL 312

SRCH Searches a table of values

STDNAME Checks a name and wraps curly brackets around if it is a non-standard name.
SYSTEM Returns various system values such as CPU time used, whether a database access
has been successful, etc.

YESNO Displays atext question box and returns response

SIR/XS Visual PQL

Session Functions

APPDI R Returns application directory
ATTRNAME Attribute n name (str)
BUFNANE Buffer n name

CURDI R Returns current directory
DEFFAM Default family name
DEFMVEM Default member name
DEFTFN Default tabfile name

DELDI R Deletes the named directory
DELFI LE Deletes the named file

EDI TNAME Editor name

FAMNAME Family n name

FI LECNT Returns a count of filesin named directory

FI LEI N Browsesfor afile
FI LEI S Returnsif name exists asfile or directory
FI LEN Returns the nth file in directory

FI LEQUT Browses for an output file

313

FI LESTAT Returns various data about named file e.g. Date/time of creation/access, size of

file, etc. Times and dates are in system format

FI LETI ME Returns various data about times of creation/access of file with times and dates

converted to SIR formats
GETENV Gets a string environment variable value

GLOBNAME Gets the name of the nth global variable

SIR/XS Visual PQL

LI NES Lines remaining on output page
MAKEDI R Creates a directory

MEMCOUNT Count of members in family

MEM NFO Various information about a member
MEMNAMVE Name of nth member

NSUBDI R Name of nth subdirectory

OUTFNAME Name of current output file
PAGELEN Length of output page

PAGENO Current output page number

PAGEW D Width of output page

PROCFI LE Procedure file filename

PROCNANME Procedure file attribute name
RACCESS Returns the read access level of user
RNMVFI LE Renames afile

SETDI R Sets current directory

SETRC Sets areturn code

S| RUSER Sets/returns the current user name

314

SuBDI R Concatenates a subdirectory to existing directory path in correct system specific

manner

SYSTEMReturns various "system" status values
UPGET Gets User Preference (from INI file)
UPSET Sets User Preference (in INI file)

WACCESS Returns the write access level of user

SIR/XS Visual PQL

W NCNT Returns the number of linesin the output window
W NLI N Returns the nth line from the output window

W NMOVE Moves and resizes the main window

W NPOS Movesto line in output window

W NSELL Returns selected line from output window

W NSELP Returns position in line selected from output window

315

SIR/XS Visual PQL 316

Schema & Database Functions
COUNT Number of records of agiven type in the current case
DATEMAP Returns the date format (map) of a date variable
DBI NDN Name of nth index on default database
DBI NDR Number of record type indexed
DBI NDS Number of indexes on default database

DBI NDT Name of the nth variable in index followed by either ASC or DESC and UPPER
if uppercase index

DBI NDU Returns 1 if index is unique

DBI NDV Number of variablesin index

DBNAME Name of the nth database

DBTYPE Returns database type, case or caseless

JOUFLAG Returns whether journaling is on for default database

KEYNAME Returns name of arecord type key field

KEYORDER Returns sort order ("A" or "D") of akey field

MAXRECS Returns the maximum allowed number of a particular record type
M SS Returns the original (string) for missing values (O - 3) for avariable
MKEYSI ZE Returns the size of the largest record key in the database
MRECSI ZE Returns size of the largest record in the database

NKEYS Returns the number of key fields for arecord type

NLABELS Synonym for NVALLAB. Returns the number of variable value labels defined
for avariable

NVAX Returns the maximum value of a numeric variable range

SIR/XS Visual PQL 317

NM N Returns the minimum value of a numeric variable range

NOFCASES Returns the maximum number of cases for the database

NRECS Returns the maximum number of record types for the database

NUMCASES Returns the number of casesin the database

NUMRECS Returns the number of records of a given type in the database

NVALI D Returns the number of defined valid values for avariable

NVALLAB Returns the number of variable value labels defined for avariable

NVARDOC Returns the number of lines of variable documentation defined for a variable
NVARS Returns the number of variables for the specified record type

NVARSC Returns the number of variables including common vars for the specified record
type

NWVAL Returns the nth valid value of a numeric variable

RECDCC Returns the nth line of documentation for arecord or database
RECDOCN Returns the number of lines of documentation for arecord
RECLEVEL Returnsthe update level at which arecord was last written to database
RECNAME Returns the name of the record type

RECNUM Returns the number of the record name

RECSI ZE Returns the record size of a specified record type

RKEYSI ZE Returns the key size of a specified record type

RRECSEC Returns the read security level of arecord type

RVARSEC Returns the read security level of avariable

SvAaX Returns the maximum value of a string variable range

SM N Returns the minimum value of a string variable range

SIR/XS Visual PQL 318

STATTYPE Returns whether anumeric variable is defined as observation, control or
neither

SWAL Returns the nth defined string valid value of avariable

TI MEMAP Returns the time format (map) string format of atime variable
UPDLEVEL Returns the current update level of database

VALI DATE Validates a value of a database variable against schema
VALLAB Returns the value label for the current value of avariable
VALLABSC Returns the value label for a specified value of avariable
VALLABSN Returns the nth value label of avariable

VALLABSP Returns the number (nth) of the value label associated with a specified value of
avariable.

VALLABSV Returns a string that is the nth value associated with value labels of avariable.
VARLAB Returns the variable label for a variable (up to 78 characters)

VARLABSC Returns the variable label of a specified variable (up to 78 characters)
VARDOCSN Returns the nth line of variable documentation of a specified variable
VARNANME Returns the name of the variable using counts excluding common vars.
VARNANMEC Returns the name of the variable using counts including common vars.
VARPOSI T Returns the input position of the variable

VARTYPE Returns the storage type of a variable (string or numeric)

VFORMAT Returns a string representing the variable input format

VTYPE Returns the SIR data type of a variable (7 types)

VRECSEC Returns the write security level of arecord type

W/ARSEC Returns the write security level of avariable

SIR/XS Visual PQL

Tabfile & Table Functions

TABI NDN Index name of nth index

TABI NDS Number of indexes on nth table

TABI NDT Variable name and sequence of nth variable on index
TABI NDU If nth index isunique

TABI NDV Number of variables in nth index
TABNAME Name of nth table

TABRECS Number of rows on nth table

TABVARS Number of cols (variables) in nth table
TABVI NFN Various numeric data about column
TABVI NFS Various string data about column
TABVNAME Column name

TABVRANG Value of valid/missing range for column
TABVTYPE Column type

TABWALI Validates table column

TABWLAB Value |label for table column

TABVWVAL Value label value for table column
TFACCESS Access a(uto),r(ead) w(rite) of nth tabfile
TFATTR Internal attribute name of nth tabfile
TFCOUNT Number of connected tabfiles

TFFI LE Filename of nth tabfile

TFGRNAME Group name of nth tabfile

319

SIR/XS Visual PQL

TFGRPWGroup password of nth tabfile
TFINNAME Journal name of nth tabfile
TFNAMVE Name of nth tabfile

TFTABS Number of tables on nth tabfile
TFUSNAME User name of nth tabfile

TFUSPWUser password of nth tabfile

320

SIR/XS Visual PQL 321

Read/Write Functions

NGET Gets the value of a numeric variable

NPUT Stores avaluein anumeric variable

NREAD Pops up a box on the screen with a prompt and returns a number from the user
SGET Getsthe value of astring variable

SPUT Storesavalue in astring variable

SREAD Pops up a box on the screen with a prompt and returns a string from the user

TVRI TE Writes a string to the scrolled output window

SIR/XS Visual PQL

Dialog & Menu Functions

BRANCH Adds a branch to the tree at a particular place.
BRANCHD Deletes a branch from the tree.

BRANCHN Returnsid of nth branch.

FI NDI TEMSearch list for text

GETBTNH Returns the height of button control

GETCHCH Returns the height of choice control

GETCHKH Returns the height of check control

GETFLT Gets floating point as per GETTXT

GETFOCUS Returns id of control with focus

GETI CHK Returns check or radio state

GETI FLT Returns floating point from alist

GETI | NT Returns integer of item from alist

GETI NT Getsinteger as per GETTXT. O if not integer

GETI TXT Returnstext of item from alist

GETLBLH Returns the height of |abels

GETLTXT Gets the text from aline in amulti-line text control
GETMAXCH Returns the height of the maximum single line control
GETMCHK Tests the state of a menu or toolbar item

GETMBEL Returns pos of nth selected item from multiple selection
GETNI TEMReturns number of itemsin choice or list

GETNLI NE Gets number of lines in multi-line text control

322

SIR/XS Visual PQL 323

GETNSEL Returns number of items selected in multiple selection

GETPCS Returns pos of current selection in list or choice or keyboard focus in multiple
selection

GETRADH Returns the height of radio control
GETRSTEP Returns the size of the row step

GETTXT Getstext from edit and from highlighted item in choice or list. (Gets label text
from label, button, check and radio)

GETTXTH Returns the height of text control

| DSTATUS Returns the status of a control

NBRANCH Returns number of brachesin atree below a point.

SCROLLAT Gets aposition in agui scrollable item

SCROLLTO Sets a position in agui scrollable item

SETPGCS Sets a position in agui multi-lineitem

SETRANGE Sets minimum/maximum values in a gui slider/spin/progress control. Sets the
maximum number of characters allowed in an edit or text field (ignoring the minimum
parameter).

Dialog Editor

DI TEM .. There are anumber of functions that return information about items on a

DEDIT dialog, that isadialog used for screen painting. These functions are all named
DITEMXxxX.

SIR/XS Visual PQL 324

Client/Server Functions

There are three serversin SIR/XS and a client program may be communicating with one
of those or with an ODBC server from another software supplier. The three SIR/XS
servers are Master that controls concurrent updates, the SQLServer, that acts asan ODBC
server for other packages, and the PQLServer that is a server that can run any SIR/XS
processes requested by a client. Most communication with master is done transparently
i.e. it does not require specific functions, however there are a set of functions that can be
used to administer master if required.

Client Functionsto administer Master

DELMCLI D Deletes the client from Master.

GETAKL Returnsthe client AutoKill Limit from Master.

GETDFC Returns the difference file copy interval from Master.

GETMCADD Returns the client tcp/ip address from Master.

GETMCLI D Returns the nth client id from Master.

GETMCLST Returns the time of last message for nth client from Master.

GETMCON Returns the time of log on for nth client from Master.

GETMDBN Returns the name for nth database from Master.

SETAKL Setsthe AutoKill time Limit for master clients.

SETDFC Sets the difference file copy interval for Master.

Client Functionsto SQL Server/ODBC

Bl NDPARM Binds an SQL Server/ODBC parameter.

COLCOUNT Returns a count of columns created by the execute

COLLABEL Returns the label of a specific column created by the execute

COLLEN Returns the length of a specific string column created by the execute

COLNAME Returns the name of a specific column created by the execute

SIR/XS Visual PQL 325

COLTYPE Returns the type of a specific column created by the execute

COLVALN Returns the numeric value of a specific column created by the execute
COLVALS Returns the string value of a specific column created by the execute
GETERR Returns the oldest error posted for this application and del etes the message.
NEXTROWSteps through the rows one at atime

ODBCTABS Produce list of tables on the data source

obBccaLS Produce list of columns from the named table on the data source
ROACOUNT Count of rows created by the execute

Client Functionsto PQL Server

SERADM N Various server administration capabilities (returning numeric values)
SERADM S Various server administration capabilities (returning string val ues)
SEREXEC Instructs server to execute previously sent commands

SERGET Gets aline of output from server

SERLI NES Asks server how many lines of output are left

SERLOG Logs on to the server

SERSEND Sends a string to the server

SERSENDB Sends a buffer to the server

SERTEST Asks server if execution has completed

PQL Server Functions

(These have no effect if used in a program that is not running on the server)
SERNOOUT Suppresses server output

SERVRI TE Writes aline of output from server

SIR/XS Visual PQL 326

CGI Functions

Buffer functions return number of lines. All parameters are string expressions.
CG BUFPN Get buffer of value of parameter

CG BUFPN Get buffer of value of parameter

Cd BUFSV Get buffer of value of server variable

CG VARPN Get parameter value

Cd VARSV Get server variable value

SIR/XS Visual PQL 327

List of Functionsfrom A to Z

ABCDEFGHIJKLMNOPQRSTUVWXY Z
ABS
num = ABS(X)
Returns the absolute value of X.
ACOS
num = ACOS(X)

Returns the arc cosine of X. Theresult isin therange O to Pl radians. Values of X outside
the range -1<X>1 return undefined.

Al NT

num = AINT(X [,n])

Returns the truncated value of X. If n is omitted or O, truncates to an integer value. If n is
specified, truncates to that power of 10. e.g. AI NT (1266, 2) truncates to 1200,
Al NT(1. 266, - 2) truncatesto 1.26.

ALOG
num = ALOY X)

Returns the natural logarithm (base €) of X. Values less than or equal to zero return
undefined.

ALOGLO

num = ALOGLO(X))

Returns the base 10 logarithm of X. Values less than or equal to zero return undefined.
AMOD

num = AMOD(X , YY)

Returns the remainder of X divided by Y. If Y is zero, undefined is returned.

APPDI R

SIR/XS Visual PQL 328

str = APPDI R(0)

Returns SIR/XS application directory. That is the directory where the SIR executables are
installed.

ARCOS

num = ARCOS(X)

See ACCs function.

ARRDI MN

num = ARRDI M\(ar r ay_nane_exp)

Returns the number of dimensions for specified local array variable.
ARRDI MST

num = ARRDI MST(array_nane_exp, di m

Returns the start value for the specified dimension for specified local array variable
(normally 1 unless array specified to start at different value).

ARRDI M5Z
num = ARRDI MSZ(ar ray_namne_exp, di m
Returns the size of the specified dimension for specified local array variable.
ARCCS
num = ARCOS(X)
See ACCs function.
ARSI N
num = ARSIN(X)
See AsI N function.
ASI'N
num = ASIN(X)

Returnsthe arc sine of X. Theresult isin the range -pi /2 to +pi /2 radians. Values outside
the range-1<X>1 return undefined.

SIR/XS Visual PQL

ATAN

num = ATAN(X)
Returns the arctangent of X. Theresult isin the range -pi /2 to +pi /2 radians.
ATTRNAME

str = ATTRNAME(n)
Returns the nth Attribute name (SY STEM(52) = attribute count).
Bl NDPARM

num = Bl NDPARM coni d, st ati d, par mo, num_exp)
Binds an sglserver/odbc parameter.
BRANCH

num = BRANCH(control _i d, parent _id, node_i d, t ext)
Creates a new node under the given parent node in the tree control.
BRANCHD

num = BRANCHD(cont r ol _i d, node)
Deletes a branch in the tree control given by the node.
BRANCHN

num = BRANCHN(cont rol _i d, node, n)
Returnsid of nth child of the given node.
BUFNAME

str = BUFNAME(Nn)
Returns the nth Buffer name (SY STEM(56) = buffer count).
CAPI TAL

str = CAPI TAL(str)

Capitalises the first aphabetic character of the string and the first al phabetic character

following ablank. All other characters remain unedited. For example:

329

SIR/XS Visual PQL 330

NAME = "this is the first day of the week’
NAME = CAPI TAL(NAVE)
Returns: This Is The First Day O The Wek

CASELOCK

num = CASELOCK(| ockt ype)

Changes the lock type for the current Case (CIR) and attempts to read the current CIR
from the database. See SYSTEM 37) function to determineif current CIR islocked. The
| ockt ype codes are (any other values set concurrent read):

1 = Exclusive

2 = Concurrent Read
3 = Concurrent Write
4 = Protected Read

5 = Protected Write
6 = Exclusive

CATI NT
num = CATI NT(A, B)

Returns an integer corresponding to the category in categorical variable A that B
matches. A and B may be variables, string constants or expressions. Returns azero if no
match is found.

CATSTR

str = CATSTR(A)

Returns a string corresponding to the current value of the specified categorical variable.
CDATE

num = CDATE(X, date format)

Returns the date integer equivalent to the date string X that may be a string constant,
variable or expression. The date format is a string expression. See date formats for a
complete description. If adate earlier than October 15, 1582 is specified, undefined is
returned. Example:

| NTDATE = CDATE(' 6/3/7', ' MM DD/ YY')
CENTER

str = CENTER(X , strY)

Returns string strY centred in astring X charactersin length. Example:

SIR/XS Visual PQL 331

RESULT = CENTER(9, 'ABC)
returns: " ABC

CG BUFPN

n = CG BUFPN(buf, pn)

Used when dealing with CGI from webserver. Puts value of CGI parameter into named
buffer. Returns number of lines. Parameters are string expressions.

C4d BUFSV

n = CA BUFSV(buf, sv)

Used when dealing with CGI from webserver. Puts value of server variable into named
buffer. Returns number of lines. Parameters are string expressions.

CA VARPN

str = CA VARPN(pn)

Used when dealing with CGI from webserver. Returns named parameter valuein string
variable. Parameter name is a string expression.

C4A VARSV

str = CA VARSV(sv)

Used when dealing with CGI from webserver. Returns named server variable value in
string variable. Server variable nameis a string expression.

CHAR
str = CHAR(N)

Returns a single character. The character returned is the character with the internal value
of N. (Seethel cHAR function.) If N islarger than 255, N isdivided by 256 and the
remainder istaken. This gives the set of standard characters. If N ismissing, anull string
isreturned (Ilength 0).

Cl RLOCK
See CASELOCK function
CLI PAPP

num = CLI PAPP(t ext)

SIR/XS Visual PQL 332

Appends text to the clipboard (the place holding text you cut and paste).

CLI PGET

str = CLIPGET(li ne)

Gets aline of text from the clipboard (the place holding text you cut and paste).
CLI PLI NE

num = CLI PLI NE(dumy)

Gets number of lines of text currently in the clipboard (the place holding text you cut and
paste).

CLI PSET

num = CLI PSET(t ext)

Clearsthe clipboard and puts text into the clipboard (the place holding text you cut and
paste).

CNT
num = CNT(X1L , X , Xn)

Counts the number of valuesin alist that exist (not missing or undefined). There may be
up to 128 variablesin the list. Returns zero (0) if no values exist.

CNTR
num = CNTR(X)

Returns the number of values of X found during a PROCESS REC or PROCESS ROWS |oop
that are not missing or undefined. Returns zero if al values are missing or undefined.

COLCOUNT

num = COLCOUNT (conid, statid)

Client/Server function. Returns a count of columns created by the execute.
COLLABEL

str = COLLABEL (conid, statid, col no)

Client/Server function. Returns the label of a specific column created by the execute.

COLLEN

SIR/XS Visual PQL 333

num = COLLEN (conid, stati d, col no)

Client/Server function. Returns the length of a specific string column created by the
execute.

COLNAME

str = COLNAME (coni d, statid, col no)

Client/Server function. Returns the name of a specific column created by the execute.
COLTYPE

num = CCOLTYPE (conid, statid, col no)

Client/Server function. Returns the type of a specific column created by the execute. This
isone of the following:

1=String

2 = Timestamp string

3 =Date

4=Time

5 = Integer

6=R4

7=R8

8 = Scaled Integer

A timestamp string is aformatted 18 byte string containing a combination date/time as
follows:

YYYYMMDDHHMMSStttt where YYY'Y isthe year, MM isthe month, DD isthe day
number, HH is the 24 hour number, MM isthe minutes, SSis the seconds and tttt is the
thousandths of a second. Any of these components may be zero.

COLVALN

num = CCOLVALN (coni d, statid, rowno, col no)

Client/Server function. Returns the numeric value of a specific column created by the
execute. This does not have to be the same type as returned by COLTYPE. e.g. Integers can
be assigned to areal.

COLVALS

str = COLVALS (conid, statid, rowno, col no)

Client/Server function. Returns the string value of a specific column created by the
execute.

COMVA

SIR/XS Visual PQL 334

str = COMVA(str)

Places a comma between every third digit to the left of adecimal point (actual or implied)
in a string with anumeric form. For example, COWA (' 4500000') returns '4,500,000'.

cos

num = COS(X)

Returns the trigonometric cosine of X, where X is measured in radians.
CRYPTKEY

num = CRYPTKEY(encrypti on_key)

Setsthe key used by the encryption functions ENCRYPT/ DECRYPT. The key isa 256 bit (32
character) string. The key only needs to be set once in a session that uses the encryption
functions. If the key is not set, the encryption functions use akey of al blanks.

The specified key is an expression. i.e. avariable name or a string in quotes.
COUNT

num = COUNT(X)

Returns the number of records for record type X within the current case.
CTI ME

num = CTIME(X , tinme format)

Returns the number of seconds from midnight to the given time.
Specify atime string X and atime format. See time formats for a complete description. If
the hour, minute or second field is omitted, they default to zero. For example:

W NTI ME = CTI ME(' 18:36:45', ' HH. MM SS')
CURDI R
str = CURDIR(0)
Returns the current directory.
DATEC

str = DATEC(X , date format)

Returns a date string equivalent to the date integer X formatted according to the date
format. The format is a string constant. See date formats for a complete description. For

SIR/XS Visual PQL 335

example, DATEC(XBEG, ' Wwy, Mwm DDt h, YYYY') producesaresult such as"Thu, May
25th, 2007

DATEMAP

str = DATEMAP (rtnum varname_exp)

Returns a string with the date format (map) of the specified date variable. If the record
number (rtnum) is negative, the function applies to asummary variable; if rtnum is one
more than the maximum record count (i.e. NRECS(0)+1) then this applies to a standard
variable.

The varnameis an expression. If thisis a constant, enclose the name in single quotes.
Undefined isreturned if the variable is unknown or is not a date variable. For example, if
the variable BIRTHDAY in record type one has the date format "MM DD YY" defined
in the schema, then DATESTR equals"MM DD YY",

DATESTR = DATEMAP (1, ' BI RTHDAY')
DATET

str = DATET(NL , N)

Returns a 27-character string containing the current date and time. The string is
composed of the following substrings:

Dat e

1- 3 Day of the week (SUN, MON, etc.)
4- 5 Comma and bl ank

6- 8 Month of the year (JAN FEB,etc.)
Bl ank

10- 11 Day of the nonth

12-13 Comma and bl ank

14-17 Year

18-19 Comma and bl ank

©

Ti me
20-21 Hour (1 to 12)
22 Peri od
23-24 M nutes
25 Bl ank
26-27 AM or PM

The two arguments N1 and N are constants in the range 1 to 27 that select a substring of
the 27-character string. For example, suppose the current date is May 25, 2000, and the
timeis 1:05 PM; the day is Thursday.

PROGRAM
TODATE = DATET (6, 17)
NOWTI ME = DATET(20, 27)
WKDAY = DATET(1, 3)

SIR/XS Visual PQL

VRl TE TODATE NOWTI ME WKDAY
END PROGRAM

QUTPUT: MAY 25, 2000 01.05 PM THU
DTTOTS

real *8 = DTTOTS (date,tine)

Takes adate and time integer and returns a timestamp. A timestamp isareal*8

336

representation and is the number of seconds since the start of the SIR/XS calendar. You

can do calculations between timestamps but the individual date and time components

must be extracted using the TSTODT and TSTOTMfunctions before using any other date and

time functions e.g. for print formatting.

DBI NDN

str = DBI NDN (i ndex)

Returns name of nth index.

DBI NDR

n = DBI NDR (i ndex)

Returns number of record type indexed by nth index.
DBI NDS

n = DBI NDS (dunmy)

Returns number of indexes on default database.
DBI NDT

str = DBI NDT (i ndex, varno)

Name of nth variablein nth index plus ASC/DESC and UPPER.

DBI NDU

n = DBI NDU (i ndex)

Returns 1 if theindex isunique or O if the index is not unique.
DBI NDV

n = DBI NDV (i ndex)

SIR/XS Visual PQL 337

Returns number of variablesin nth index.
DBNAME
str = DBNAME (n)

Returns a string with the name of the nth attached database. If n is zero, returns the name
of the default database.

DBTYPE
num = DBTYPE (dumy)
Returns 1 if a case structured database or O if caseless.
DECRYPT
str = DECRYPT(string, | ength)

Decrypts an encrypted string. Set the encryption key (using CRYPTKEY prior to the first
invocation of this function. Obviously the key must be the same as was used to encrypt
the string.

DEFFAM

str = DEFFAM 0)
Returns the default family name.
DEFMEM

str = DEFMEM 0)
Returns the default member name.
DEFTFN

str = DEFTFN(0)
Returns the default tabfile name.
DELDI R

n = DELDI R(di r _nane)
Deletes the named directory. Returns O for success.

DELFI LE

SIR/XS Visual PQL 338

n = DELFI LE(fil e_nane)
Deletes the named file (use filename not attribute). Returns O for success.
DELMCLI D

str = DELMCLI (i d, passwor d)

Deletes the client from master. Get the client id from GETMCLI D. Specify a password as a
string variable or string in quotes if the Master is started with a password.

DGLOBAL

num = DGLOBAL(string_exp)

Deletes aglobal. The string expression may be the global name enclosed in quotes or a
string variable.

DI TEM

DI TEM . .

The DI TEMseries of functions all pertain to the Dialog Editor used to construct screen
painting applications.

DI TEMCOL

num = DI TEMCOL(n) Returnsthe column the nth DEDIT item is positioned at.

DI TEMH

num = DI TEVH(n) Returnsthe height of the nth DEDIT item.

DI TEM D

num = DI TEM D(n) Returnstheid of the nth DEDIT item.

DI TEMROW

num = DI TEVROA n) Returnsthe row the nth DEDIT item is positioned at.

DI TEMS

num = DI TEMS(0) Returnsthe number of itemson DEDIT dialog.

DI TEMSEL

num = DI TEMSEL(0) Returnsthe number of items selected on DEDIT dialog.

SIR/XS Visual PQL 339

DI TEMSI D

num = DI TEMSI D(n) Returnstheid of the nth selected DEDIT item.

DI TEMI'XT

str = DI TEMIXT(n) Returnsthetext of the nth DEDIT item.

DI TEMTYP

num = DI TEMTYP(n) Returns the type of control of the nth DEDIT item.

DI TEMWV

num = DI TEMA(n) Returnsthe width of the nth DEDIT item.
DSN
str = DSN(string_exp)

Returns the operating system filename of an attribute. The attribute may be a variable or
constant.

ED T
output_str = EDIT(input_str,edit_str)

EDIT applies an edit string to data to produce the output. The edit string is made up of
circumflexes ("), that represent a character of the input string, and any other characters
to insert. Example:

PROGRAM

SSN = EDI T(' 123456789' , ' MA-AN_ANNATY
VWRI TE SSN

END PROGRAM

Qut put: 123-45-6789

EDI TNAVE

str = EDI TNAVE(0)

Returns the name of the current text editor.
ENCRYPT

str = ENCRYPT(string, | ength)

SIR/XS Visual PQL 340

Encrypts a string. Set the encryption key (using CRYPTKEY) prior to the first invocation of
this function.

The string isa SIR string and the encrypted string is also anormal SIR string but it
should be noted that encryption may result in non-text characters and so encrypted strings
should not be written to text files.

The encryption agorithm encrypts eight (8) characters at atime and any input string is
padded with blanks so that the output is a correctly encrypted string. If you truncate this
and save an encrypted string that is not a multiple of eight, the last few characters will not
decrypt properly.

ERROR

num = ERROR(strX)

Displays an error box with the specified text and waits for acknowledgment.
EXI STS

num = EXI STS(X)

Returns 1if X exists, 0if X ismissing or undefined. To test several numeric variables for
existence, use the CNT function.

EXTERN
num = EXTERN (X)

Invokes a user-supplied external function from the EXTERN dIl. The function can take a
numeric or string parameter and calls a different user function for each case. The
extern.dl | library supplied by SIR contains dummy functions which return zero.

EXTERNS
str = EXTERNS (X))

Invokes a user-supplied external function from the EXTERN dll. The function can take a
numeric or string parameter and calls a different user function for each case. The
extern.dl | library supplied by SIR contains dummy functions which return blank (a
zero length string).

EXP
num = EXP(X)
Returns the value of eraised to the X power. eisthe constant 2.71828.

FAMNANVE

SIR/XS Visual PQL 341

str = FAMNAME(n)
Returns the nth family name in the default procfile. (SYSTEM 57) = Count of families).
FEQ

str = FEQ(real 1, real 2, exponent)

Tests two floating point numbers for equality within alimit of accuracy. The function
returns O if approximately equal, 1 if unequal. For example, if the exponent was -3, the
numbers would be equal if within .001.

FI LECNT

n = FI LECNT(str)

Countsthe filesin the directory given by the string argument. The string must be a
filename or mask. For example, specify amask like *.pgl' for the count of those files
with extension "pgl"” in the current directory.

FI LEIN

str = FILEIN(filter, default_extension)

Displays afile browse box for user to choose existing file. Returns zero length string if
user cancels.

FILEI S

n = FILEI S(fil e_nane_string)

Testsif file exists. Returns -1 if nameis adirectory; O if no such name; 1 if file exists.
FI LEN

str = FILEN(string,n)

Returns the nth file name in the directory given by the string argument. The string must
be afilename or mask. For example, to list al files with extension "pgl" in the current
directory:

FOR N = 1, FI LECNT("*. pgl ")
. WRITE [FILEN("*.pgl ", N)
END FOR

FI LECUT

str = FILEQUT(filter, default_extension)

SIR/XS Visual PQL 342

Displays afile browse box for user to choose output file. Returns zero length string if
user cancels.

FI LESTAT
n = FI LESTAT(fil ename_string, type_of _data)

Returns various system specific data about a named file.

Type of data

1 gid Numeric identifier of group that owns file (UNIX-specific)

2 &t atime Time of last access of file. (system date/time integer)

3 &t _ctime Time of creation of file. (system date/time integer)

4 st_dev Drive number of the disk containing the file (same as st_rdev).

5 st_ino Number of the information node (the inode) for the file (UNIX-specific).

6 st_mode Bit mask for file-mode information. The _S IFDIR bit isset if path specifiesa
directory; the_S IFREG bit is set if path specifies an ordinary file or adevice. User
read/write bits are set according to the file€'s permission mode; user execute bits are set
according to the filename extension.

7 st_mtime Time of last modification of file. (system date/time integer)

8 st_nlink Always 1 on non-NTFS file systems.

9 st_rdev Drive number of the disk containing the file (same as st_dev).

10 st_size Size of the file in bytes; (Can exceed 14 in size)

11 uid Numeric identifier of user who owns file (UNIX-specific)

FI LETI ME
n = FILETI ME(fil ename_string, type_of _data)

Returns SIR times or dates about afile

Type of data

1 Time of last access of file. (SIR time integer)

2 Date of last access of file. (SIR date integer)

3 Time of creation of file. (SIR time integer)

4 Date of creation of file. (SIR date integer)

5 Time of last modification of file. (SIR time integer)
6 Date of last modification of file. (SIR date integer)

FI LL

str = FILL(strX , strY)

Replaces all blank charactersin strX with the first character of string argument strY. The
length of strX does not change. For example:

RESULT = FILL (' $100.00', '*")
returns "**$100. 00"

SIR/XS Visual PQL 343

FI NDI TEM
num = FI NDI TEM (i d, pos, t xt)

Search dialog choice or list for text and return position. Can start from partway through.
FORMAT

str = FORVMAT(X [,W[,D 1])

Converts X to astring. FORVMAT(X) returns free-field format as wide as necessary to fit
the value. FORMAT(X, W returns afree field format of width W. FORVAT(X, W D) returnsa
number with D decimal placesin width W. X, W and D, can be variables, constants or
expressions. W, if specified, must be greater than or equal to zero. D, if specified, can be
-1 or greater than or equal to zero. -1 is equivalent to not specifying avalue (freefield
format). If D is specified, W must be greater than D. For example:

STR = FORMAT (1. 3) returns '1.3

STR = FORMAT (1.3, 4) returns ' 1.3

STR = FORMAT (1.3, 5, 2) returns ' 1.30
FST

num str = FST(X1, X.., Xn)

Returnsthe first value in the list of up to 128 variables that is not missing or undefined.
FSTR

nunj str = FSTR(X)

Returns the first value of X encountered during a PROCESS REC Or PROCESS ROWS loop
that is not missing or undefined.

GETBTNH
num = GETBTNH (dunmy)
Returns the height of button control (for positioning).
GETCHCH
num = GETCHCH (dumy)
Returns the height of choice control(for positioning).

GETCHKH

SIR/XS Visual PQL 344

num = GETCHKH (dunmy)

Returns the height of check control(for positioning).

GETAKL
n = GETAKL(O)
Returns automatic disconnection timeout for idle clients (from Master) in minutes.
GETDFC
n = GETDFC(0)
Returns time (from Master) of difference file copy interval in minutes.
GETENV

str = GETENV(vari abl e_str)

Returns the value of the named environment variable.
COMPUTE OSPATH = GETENV(' PATH)

GETERR

str = GETERR (dunmy)

Client/server function. Returns the oldest error posted for this application and deletes the
message. Returns a zero length string if no messages. Errors are not specific to a
connection or statement, rather they are posted for thisinstance of SIR/XS and, if errors
are not retrieved when an error condition occurs, multiple error messages may be waiting.
Onelogical error may aso give rise to multiple error messages from the server.

GETFLT

dbl = GETFLT (id)

Gets floating point as per GETTXT. Returns 0.0 if not f.p. number.
GETFOCUS

num = GETFOCUS (0)

Returnsid of control with focus.

GETI CHK

SIR/XS Visual PQL

num = GETI CHK (i d)

Returns check or radio state.

GETI FLT

dbl = GETIFLT (i d, pos)

Returns floating point from alist.

GETI I NT

int = GETIINT (id, pos)
Returnsinteger of item from alist.

GETI NT

int = GETINT (id)

Getsinteger as per GETTXT. O if not integer.
GETI TXT

str = GETITXT (id, pos)

Returnstext of item from alist.

GETLBLH

num = GETLBLH (dumy)

Returns the height of labels (for positioning).
GETLTXT

str = GETLTXT (id,p)

Gets the text from alinein amulti-line text control.

GETVAXCH

num = GETMAXCH (dunmy)

Returns the height of the maximum single line control (for positioning).

GETMCADD

str = GETMCADD (i d)

345

SIR/XS Visual PQL

Returns tcp/ip address for client from master.
GETMCHK

num = GETMCHK (i d)

Returns check state from menu item.
GETMCLI D

n = GETMCLI D (n)

Returnsid for nth client from master.
GETMCLST

n = GETMCLST (n)

Returns time of last message for nth client from master.

GETMCON

n = GETMCON (n)

Returns time of log on for nth client from master.
GETNMDBN

str = GETMDBN (n)

Returns name of nth database from master.
GETMBEL

num = GETMSEL (i d, N)

346

Returns the position of the nth selected item from a single or multiple selection list. In the

case of asingle selection list then GETMSEL(i d, 1) iSthe same as GETPOS(i d) .

GETNI TEM

num = GETNI TEM (i d)

Returns number of itemsin choice or list.
GETNLI NE

num = GETNLI NE (i d)

SIR/XS Visual PQL 347

Gets number of linesin multi-line text.
GETNSEL
num = GETNSEL (i d)

Returns number of items selected in multiple selection or returns 1 for a single selection
list.

GETPCS

num = GETPOS (i d)

Returns pos of current selection in list or choice or keyboard focus in multiple selection.
GETRADH

num = GETRADH (dummy)

Returns the height of radio control (for positioning).
GETRSTEP

num = GETRSTEP (dunmy)

Returns the size of the row step (for positioning).
GETTXT

str = GETTXT (id)

Getstext from edit and from highlighted item in choice or list. (Gets label text from labdl,
button, check and radio).

CGETTXTH

num = GETTXTH (dumy)

Returns the height of text control (for positioning).
GLOBALN

num = GLOBALN(gl obvar _exp , numeric_exp)

Assigns a numeric value to a global variable. The first argument is the name of the global
variable, the second argument is the numeric expression (or variable name). For example:
To assign the global variable RT the value 25.5:

COWUTE Y = GLOBALN(' RT", 25.5)

SIR/XS Visual PQL 348

GLOBALS
num = GLOBALS(stringexp , stringexp)

Assigns astring value to aglobal variable. The first argument is the name of the global
variable, the second argument is the string expression (or variable name). For example:
To assign the global variable TEMP the value JOE SMITH:

COVPUTE Y = GLOBALS (' TEMP' ,' JOE SM TH)
GLOBALN and GLOBALS return:;

0 if the assignment was made.
-1if the first argument is not avalid global variable name.
-2 if the second argument is missing.

Do not try to use the value of globals set by GLOBALN or GLOBALS for text substitution in
the same program (by using the global variable name within angle brackets) because the
functions work at execution time and text substitution happens at compile time.

GLOBNAME

str = GLOBNAME(N)

Returns the name of the nth global variable. (SY STEM(53) = Global Count).
HELP

error = HELP(hel p page)

Invokes the HEL P system, beginning with the specified help page. The page must be in
html format in the help directory. The page name can contain directory names using
forward slashes to delimit. Enclose the name in quotes. The system convertsthisto afile
name prefixed with a path pointing to the help directory and suffixed with the file
extension . ht m For example:

COWUTE X = HELP (' visual pgl/function/foreword')
| CHAR
num = | CHAR()

Returns a numeric value equivalent to the position in the character collating sequence of
thefirst character in string C. The character collating sequence for a given computer is
the set of numeric codes used for internal character representation (ASCII).

| DSTATUS

SIR/XS Visual PQL 349

num = | DSTATUS(i d)

Returns the status of agui element. -1 = the control does not exist; O = the control is
disabled; 1 = the control is enabled.

JOUFLAG

num = JOUFLAG (dummy)

Returns whether journaling is on (1) or off (0) for the database.
JuLC
str = JULC(X))
Converts a"date integer”, X, into an 12-character string of the form'MMM DD, YYYY".
JULN
num = JULN(nont h, day, year)

Returns a"date integer" where the three numeric arguments are month, day and year. A
"date integer” isthe number of days since the start of the Gregorian calendar on October
15, 1582.

Y ears can be specified as various values. If ayear of zero is specified, thisyear isused. If
ayear of lessthan 10 is specified, this decade is used. If ayear between 10 and 9 is
specified, the CENTYR parameter is used to determine the appropriate century to use. If a
year between 100 and 999 is specified, then values greater than 583 are taken to be in the
last millennium (1583 - 1999), values smaller than 583 are taken to be in the current
millennium (2000+).

A value of undefined isreturned if a date earlier than October 15, 1582 is specified.
Because of leap years, thisroutine is only accurate for dates up to Dec 31 29999.

For example:

DURATION = JULN(4, 8, 0) - BEG NDAT
ENDPRQJ = JUNL(TMON, TDAY, TYEAR)
KEYNANME

str = KEYNAME (rtnum keynun)

Returns the name of the specified keyfield for the specified record type. RTNUMis the
record number. KEYNUMis the number of the keyfield, i.e. 1isthe caseid, 2 isthefirst key
field in the record type, etc.

KEYORDER

SIR/XS Visual PQL 350

str = KEYORDER (rtnum varnanme_string)

Returns"A" or "D" for the sort order of the specified keyfield. The variable name
argument is an expression.

LEN

num = LEN(strX)

Returns an integer value that is the length, in characters, of the string strX, leading and
trailing blanks included.

LGLO
num = L10(X)
See ALOGLO function.
LI NES
num = LI NES(fil enane)
Returns number of lines remaining on current page being written to afile.
LN
num = LN(X)
See ALOG function.
LOG
num = LOY X)
See ALOG function.
LOGLO
num = LOGLO(X)
See ALOGLO function. (LGLO isalso allowed.)
LOVER
str = LONER(string)
Returns the string with all characters converted to lower case.

LST

SIR/XS Visual PQL 351

num str = LST(X1 , X ,..... , Xn)

Returnsthe last value in the list of up to 128 variables that is not missing or undefined.
LSTR

num str = LSTR(X))

Returnsthe last value of X encountered in a PROCESS REC or PROCESS ROWS loop that is
not missing or undefined.

MAKEDI R

num = MAKEDI R(nane)

Creates anew directory using the name. Returns -1 if the directory cannot be created.
MAX

num str = MAX(X1 , X ,..... , Xn)

Returns the maximum value in the list of up to 128 variables.
MAXR

nunj str = MAXR(varnane)

Returns the maximum value of the specified variable encountered during a PROCESS REC
or PROCESS ROWS loop that is not missing or undefined.

MAXRECS

num = MAXRECS(rectype)

Returns the maximum number of records allowed for this record type.
MEAN

num= MEAN(X1 , X ,..... , Xn)

Returns the mean (arithmetic average), of the values within the list that are not missing or
undefined. The maximum number of variables allowed in the argument list is 128.

MEANR

num = MEANR(varname)

SIR/XS Visual PQL 352

Returns the mean (arithmetic average), for the values of the specified variable
encountered during a PROCESS REC or PROCESS ROWS |oop that are not missing or
undefined.

MEMCOUNT

num = MEMCOUNT(f anmane)

Returns the count of members in the named family of the default procfile.
MEM NFO
num = MEM NFQ(nerber _nane, i nf o_t ype)

Returns information about the named member. The member name can include the :type
gualifier. The function returns missing if the member does not exist.

The INFOTYPES are:

1. TYPE -returns1for:T; 2for :E; 4for:O; 8for:V
If the member type is not given in the member name, and there is more than one
type for this name then the sum of the typesis returned. e.g.
SYSPROC. MENU. ABOUT isa:t and an :0 so
MEM NFO (" SYSPROC. MENU. ABOUT", 1) returns5
MEM NFO (" SYSPROC. MENU. ABOUT: O', 1) returns4
MEM NFO (" SYSPROC. MENU. ABOUT: E", 1) returns missing.
2. SECURITY returns O (no password), 1 (password & public), 2 (password & not
public).
LENGTH returns the number of bytesin the member (note there is some
condensing going on here).
CREATE DATE returns the creation date as a Julian date integer.
CREATE TIME returns the creation time as number of seconds since midnight.
MOD DATE returns the last modification date as a Julian date integer.
MOD TIME returns the last modification time as number of seconds since
midnight.
STATUS (mainly for :e:0 and :v types):
0- good
-l incorrect version of SIR
-2 Default database not connected
-3 Database creation date/time mismatch
-4 incorrect PQL Retrieval version
-5 CIR/Record Schema level mismatch.

w

No ok

©

MEMNANVE

str = MEMNAME(f amane, n)

SIR/XS Visual PQL 353

Returns the name of the nth membersin the named family of the default procfile.
M N

nunjstr = MN(X1 , X,..., Xn)

Returns the minimum value in the list of up to 128 variables.
M NR

num str = M NR(varnane)

Returns the minimum value of the specified variable encountered during a PROCESS REC
or PROCESS ROWS loop that is not missing or undefined.

M SNUM
num = M SNUM X)

If X isundefined, O isreturned. If X ismissing, the missing type isreturned (1 to 3). If X
is neither missing nor undefined, undefined is returned. X may be a numeric or string
variable.

M SS

str = MSS (rtnum varnane_str , n)

Returns the original value for undefined and first, second and third missing values (as a
string), wheren is 0, 1, 2, or 3. If the record number (rtnum) is negative, the function
applies to asummary variable; if rtnum is one more than the maximum record count (i.e.
NRECS(0)+1) then this appliesto a standard variable.

M SSI NG

nunj str = M SSI NE var nane)

Returnsthe original value of avariableif it is missing, otherwise undefined is returned. If
the variable is atime, date, or categorical integer, the original string valueisreturned. If
the variableis an integer or floating point variable, the original numeric value is returned.
If the argument is not a single variable name, undefined is returned.

MKEYSI ZE

num = MKEYSI ZE (dumy)

Returns the maximum key size in bytes for the database. The key for arecord is
comprised of the case identifier (in a case structured database), the record type number,

SIR/XS Visual PQL 354

and the keyfields defined for the record type (if any). Refer to the schema definition
command MAX KEY SI ZE for more information about maximum key size.

MCD

See AMOD function.
MRECSI ZE

num = MRECSI ZE (dunmy)

Returns the size of the largest record type in the database. Size is expressed in the number
of double words that are equivalent to eight characters.

MBGTXT

str = MBGITXT (num

Returns the text of the error or warning massage given by the number num
NARG

num = NARG num)

Returns numeric arguments from the command parameter list. (String parameters are
retrieved with the SARG function.)

The argument is the position of the parameter in the list. An argument value of zero
returns the number of parametersin thelist. If the argument is greater than the number of
parameters in the parameter list or the argument is a string, undefined is returned. For
example, to return the value of the third argument of the parameter list (which must be
numeric):

COVPUTE ARG4 = NARGE 3)

NBRANCH

num = NBRANCH (control _i d, node)

Returns number of branches of the given node in atree control.
NEXTROW

num = NEXTROW (coni d, stati d)

Client/server function. Steps through the rows one at atime. This must be issued before
getting data for the first row. Returns the row number or zero if no more rows.

SIR/XS Visual PQL 355

NGET

num = NGET(varnane_str)

Returns the value of the specified numeric variable. The variable name is specified as a
string variable, quoted string constant or string expression whose value is the name of a
common, record or program variable.

NGLOBAL
num = NGLOBAL(C)

Returns the value of numeric global parameters. C is a character variable, constant or
expression whose value specifies the name of the global parameter. If C isnot a defined
global parameter, undefined is returned. String global parameters are retrieved with
SGLOBAL. For example, to set the variable NVAL to the value of global parameter

RACETI ME:

COVPUTE NVAL = NGLOBAL (' RACETI ME')
NKEYS

num = NKEYS (rtnum)

Returns the number of keyfields (sort-ids) for the specified record type (excluding the
caseid).

NLABELS

num = NLABELS (rtnum, varnane_str)

See NVALLAB.
NMAX

num = NVAX (rtnum, varnane_str)

Returns the highest valid numeric value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
See VAR RANGES for more information about valid ranges.

NM N

num= NM N (rtnum varnane_str)

Returns the lowest valid numeric value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than

SIR/IXS Visual PQL 356
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
See VAR RANGES for more information about valid ranges.

NOFCASES

num = NOFCASES (dumy)

Returns the current maximum number of cases as defined in the schema See N of CASES
for more information.

NOwW
num = NON dummy)

Returns a "time integer" representing the current time of day as the number of seconds
since midnight. The argument is a dummy argument, specify zero.

NPUT
num= NPUT (A, Y)

Stores the value of numeric argument Y in numeric variable A. A isastring variable
name, quoted string constant or string expression whose value is the name of a common,
record, or program variable. The value returned by the function is the value actually
stored in A (possibly undefined, missing, etc.). If A refersto acommon or record
variable, the Retrieval must be in update mode. The following example stores 175 in the
variable Height:

COVPUTE DUMWY = NPUT(' HEI GHT', 175)

NREAD

num = NREAD(strX)

Pops up a box on the screen with a prompt and returns a number from the user.

If anon-numeric field is entered, a message is issued and the user is prompted again.
NRECS

num = NRECS (dunmy)

Returns the maximum number of record types for the database. Thisis the maximum
possible number of record types, not the actual number of record types defined for the
database.

NSUBDI R

SIR/XS Visual PQL 357

str = NSUBDIR (n)

Returns the name of the nth sub-directory.
NUVBR

num = NUMBR(strX)

Returns the numeric value of the string strX. strX isastring constant, variable name or
expression and contains only numerical characters, at most one decimal point and a plus
or minus sign or isin E+exponent format.

NUMCASES

num = NUMCASES (dummy)

Returns the number of casesin the database. Same as functions SYSTEM 24) or
NUVRECS(0) .

NUMRECS

num = NUMRECS (rtnum)

Returns the number of records of the specified record type.
NVALI D

num = NVALID (rtnum, varnane_str)

Returns the number of valid values for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

NVALLAB

num = NVALLAB (rtnum, varnane_str)

Returns the number of value labels defined for a variable. NLABELS is a synonym. If the
record number (rtnum) is negative, the function applies to asummary variable; if rtnumis
one more than the maximum record count (i.e. NRECS(0)+1) then this appliesto a
standard variable.

See VALUE LABELS for more information about value labels.

NVARDOC

num = NVARDOC (rtnum, varnane_str)

SIR/XS Visual PQL 358

Returns the number of lines of documentation defined for avariable. Variable
documentation does not apply to a summary variables. (Just use comment linesin
programs for documentation.) See VAR DOC for more information about variable
documentation.

NVARS

num = NVARS (rtnum)

Returns the number of variables (not Common) defined in the specified record type.
NVARSC

num = NVARSC (rtnum)

Returns the number of variables (including Common) defined in the specified record
type.

NVVAL

num = NWAL (rtnum, varname_str , n)

Returns the value of the nth valid value of a numeric variable. If the record number
(rtnum) is negative, the function applies to asummary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

ODBCCOLS

num = ODBCCOLS (coni d, statid,tabnane)

Client/server function. Does an ODBC query that produces aresult set that contains alist
of columns from the named table on the data source and can be interrogated using the
standard functions.

ODBCTABS

num = ODBCTABS (coni d, statid)

Client/server function. Does an ODBC query that produces a result set that contains alist
of tables on the data source and can be interrogated using the standard functions.

OUTFNANE
str = OUTFNAME (0)
Returns the name of the default output file.

PACK

SIR/XS Visual PQL 359

str = PACK (strX)

Returns a string with leading and trailing blanks deleted and multiple blanks compressed
into one blank. The argument strX may be a string constant, variable name or string
expression.

PAD
str = PAD(input, pad , len , trunc)

Pads the input string with the specified pad character to the pad length and then truncates
the string to the truncation length.

PAGELEN

n = PAGELEN(fi | enane)

Returns the current setting for page length for specified file.

PAGENO

n = PAGENQ(fi |l enane)

Returns the current page number on specified file.

PAGEW D

n = PAGEWD(fi | enane)

Returns the current setting for page width on specified file.
PATTERN

num = PATTERN (strX , pattern_str)

Returns 1 if the pattern specified by pattern_str isin strX, otherwise 0. Both arguments
are strings and can be variables, constants or expressions. The pattern can contain the
match anything character " @". Undefined isreturned if either argument is missing or

undefined. For example, the following returns 1.
THERE = PATTERN (' M. Ral ph Jones', 'M.@ones@)

PFORVAT

str = PFORVAT(num picture)

Formats a number according to a picture, returning a string. A pictureisastring of
characters, enclosed in quotes. Within the picture certain characters have special
meanings. The meanings are identical to those used on the output specification of the
VR TE command as per the following:

SIR/XS Visual PQL 360

Each digit can be represented by a"9", a"z", a"*" ora"$". "9" specifies that leading
zeros are replaced by blank; "z" specifies that leading zeros are written; "*" specifies that
leading zeros are replaced by "*"; "$" after an initia "$" character, represents a floating
dollar sign where leading zeros are suppressed. If the field has a value of zero, a picture
of al "9"sresultsin blanks and all "$"sresultsin asingle"$" since al leading zeros are
suppressed; if asingle zero is wanted, specify asingle "z" asthe last character of the
picture.

A period represents the decimal point and separates the specification into characters
before and after the decimal point. There can only be one decimal point (period) in the
picture. If there are insufficient digits to display the integer portion of the field (including
any minus sign when negative and $ when specified), the field iswritten as all 'X's. The
decimal component is rounded to match the number of decimal digits specified. If there
are no decimal digitsin the picture, the field is rounded to the integer value.

Specify comma (,) to insert this character. If leading zeros are suppressed (by blanks or a
floating dollar), any leading commas are suppressed. If asingle dollar sign is specified, it
isoutput in that position. If multiple dollar signs are specified, these suppress leading
zeros and result in afloating dollar sign that is output in front of the first significant digit.
After the decimal point, the special characters"9", 'Z',"$" and "*" are all equivalent and
specify adigit. Any other characters are treated as any other special character.

Negative numbers, by default, are output with a minus sign ahead of the first significant
character. If an explicit minus sign isincluded as the last character in the picture, and the
number is negative, the minusiswritten at that point. Any other characters are output at
the position specified in the picture. For example:

PROGRAM

wite ["'"+PFORMAT(2500, "' $zzzz.zz"')+"'"] 40t

"' $2500. 00" "

wite ["'"+PFORMAT(12345.67,"' zzzzzzzz.zzzzz')+"'"] 40t
"' 00012345. 67000" "

wite ["'"+PFORMAT(SQRT(99), ' 999999. 9999999') +"' "] 40t

9.9498744' "
Wite ["'"+PFORVAT(12345.67,'z z z z z.ZZZZ')+"'"] 40t "tlo2
3 4 5.6700""

wite ["'"+PFORMAT(12345. 67, ' ZZZZZ') +"' "] 40t

"' 12346" "

Wite ["'"+PFORMAT(12345, 67, ' ******xx% xx')4 n] 40t

" ****12345. 67| n

wite ["'"+PFORMAT(12345.67,'9,999,999.99")+""'"] 40t

12, 345. 67" "

le te [ll' "+PmeT(12345 67’ ' 9’ 97 9, 9, 9’ 9, 9, 9 9, 9, 9-) +m "] 40t
1,2,3,4,5.6,7,0""

wite ["'"+PFORMAT(-9,"' ZZZ')+""'"] 40t

09' "

END PROGRAM

Pl CTURE

num = Pl CTURE(str, picture)

SIR/XS Visual PQL 361

Validates a string according to a specified picture. A pictureisastring of characters,
enclosed in quotes. string. Within the picture certain characters have special meanings:
Note: the character codes are lower case. They are:

- any letter

- any digit

any letter or digit

- nuneric val ue conponents (0-9, decimal point,+, +"" E)
- any uppercase letter

- any lowercase letter

- any character

X —TcCc nw oo
1

The first example returns a 0 showing the string matches the picture. The second example
returns a 6 to show that the string does not match the picture in the sixth position:

X = PICTURE ('123-45-6789',"' ddd-dd-dddd")
X = PICTURE ('123-45-67', 'ddd-d-ddd')
PROCFI LE

str = PROCFI LE(0)

Returns the filename of the default procfile (e.g.: c\SIRXS\company.sr4)
PROCNANE
str = PROCNAME(0)

Returns the attribute of the default procfile. In SIR/XS thisis always PROCFI LE.
PROGRESS

num = PROGRESS (type, percent)

Controls the display of a progress bar.

x = PROGRESS (0, 0) initiatesthe display.

x = PROGRESS (1, n) displays progress up to n where nisa percentage from 1 to 100.
x = PROGRESS (2, 0) closesthedisplay.

The initiation, updating and closing do not have to be in the same Visual PQL program.
Onceinitiated in a program, the progress display is closed only by this function, not
automatically at the end of the program and thus can be used to display progress through
asuite of programs. If the progress display has not been initiated, the function has no
effect.

RACCESS

num = RACCESS (dummy)

SIR/XS Visual PQL 362

Returns the read security access level of the current user. That isthe level corresponding
to the read security password of the user.

RAND
num = RAND(dunmy)

Returns a uniform random number between 0 and 1. The normal way to call the function
iswith adummy argument of zero. Multiple calls then return a sequence of random
numbers. If the function is called with a number as the argument, this resets the seed and
returns the first random number generated from that seed. For a given seed, the same
sequence of random numbersis generated. Y ou can also alter the default seed by
specifying a seed on the RETRI EVAL or PROGRAM command.

RANF

See RAND function.
REAL4

num = REAL4(real *8)

Convertsarea* 8 into area*4 number.

RECDOC
num = RECDOC(r ecno, | i neno)

Returns the nth line of documentation for the record. If the line number is zero, the
function returns the record label. If the record number is zero, the function returns the nth
line of database level documentation and if both record and line number are zero then the
DATABASE LABEL is returned.

RECDCOCN

num = RECDOCN(r ecno)

Returns the number of lines of documentation for the record. If the record number is zero,
the function returns the number of lines of database level documentation.

RECLEVEL

num = RECLEVEL(dunmy)

Returns the update level of the current record (when it was last written to the database).
The update level changes with each modification to the record (during a RETRI EVAL

SIR/XS Visual PQL 363

UPDATE, Batch Data Input run, FORM S updating session, etc.). This function can only be
used in a PROCESS REC loop.

RECLOCK

num = RECLOCK(| ocktype)

Changes the lock type for the current record for concurrent operations and attempts to
read the current record from the database. See SYSTEM 36) function to determineif
current record islocked. Thel ockt ype codes are (all other values set concurrent read):

1 & 6 = Excl usive

2 = Concurrent Read
3 = Concurrent Wite
4 = Protected Read
5 = Protected Wite
RECNAME

str= RECNAME(rtnum)

Returns the name of the specified record type. If rtnumis 0, "CIR" isreturned. Only used
in aRETRI EVAL.

RECNUM

num= RECNUM recnane)

Returns the number of the specified record name. If the name does not exist, returns
undefined. Only used in aRETRI EVAL.

RECSI ZE

num = RECSI ZE (rtnum)

Returns the record size for the specified record type in double words. For example, to
find the length of record type 1:

EMPSI ZE = RECSI ZE (1)
REGEXP
num = REGEXP(string, regul ar_expression, nt h, styl e)

Searches a string for the nth occurrence of a substring as specified by the regular
expression. Returns-1if error in regular expression, O if not found in string or n where n
is start position of nth occurrence of found string.

SIR/XS Visual PQL 364

A regular expression is one where special characters describe the matching that is
required. The meaning of the special characters needs to be specified and thereisa
standard for regular expressions used by many packages. SIR has had its own regular
expression processor and these functions REGEXP/ REGREP allow you to choose whether to
use standard PERL or POSIX expressions or SIR expressions. A styl e of 1 specifies SIR
expression, 2 specifies PERL and 3 specifies POSIX. PERL is the default. Please see
standard documentation for PERL and POSIX for afull explanation of the syntax of their
regular expressions.

SIR Expressions

A SIR expression consists of the following:

c literal character (eg: " Name: ")

? any character except end of line (eg: " ?and");

% beginning of line (eg: "% irst");

$ end of line (null string before end of line) (eg: "1 ast . $");;

[...] character class (any one of ‘these’ characters)(eg: [a- zA- Z0- 9#@% |);
[!...] negated character class (all but these characters) (eg: [! a- z]);

* closure (zero or more occurrences of the previous pat)(eg: [a- z] *);

+ closure (one or more occurrences of the previous pat)(eg: [a- z] +);

@c escaped character (eg: @ @, @);

Any special meaning of charactersin an expression islost when escaped, inside|...] orin
the following cases:

% not at the beginning (eg: [0- 9.] +%);

$ not at theend (eg: $[0-9.] +);

* at the beginning of a pattern;

+ at the beginning;

A character class consists of zero or more of the following elements, surrounded by [and
]:

c literal character, including [

a-C range of characters (digits, lower or upper case)

I negated character class (if at beginning)

@c escaped character (@!, @-, @@, @])

Special meaning of charactersin a character classis lost when escaped or for:

I not at the beginning

- at the beginning or end

Any part of expression may be specified to be 'tagged':

< start atagged substring

> end atagged substring

(Tagged substrings are numbered from left to right. See the substitution expression for
replacement of tagged substrings.)

A substitution pattern consists of zero or more of the following elements:

c litera character

SIR/XS Visual PQL 365

& ditto, i.e. whatever was matched

@c escaped character (@&)

@n tagged substring insertion

An escape sequence consists of the character @ followed by a single character:
@n end of line

@t tab character

@c any other character (including @@)

Examples:

1) Mark numberswith []s:

PROGRAM
c
¢ Put nunbers in square brackets
c
STRI NG*80 TEXT
SET TEXT ("this is 123 or 456 test")
. COWPUTE TEXT = REG ep(TEXT,"[0-9]+","[&] ", 1,1)
. WRI TE TEXT
END PROGRAM

2) Swap Last name and first name + possibleinitial:

RETRI EVAL
PROCESS CASES
PROCESS RECORD 1
GET VARS NAMVE
WRI TE [REGREP(NAME, " ","@ "+CHAR(9)+' @ @ ",1,1)]
END RECORD
END CASE
END RETRI EVAL

3) Find each word in a sentence. In POSI X, the expression\ w* (\ W $) matches any
number of letters (\w*) followed by anon-letter \W) or (]) end of line ($). The expression
\w(\ W $) will find asingle letter followed by a non-letter and so point to the end of a
word.

PROGRAM
c
¢ Find words in a string
c
STRING*80 TEXT
SET TEXT ("Find the words in a string")
SET N (1)
LOOP
COWUTE PCS1 = REGEXP(TEXT, "\w*(\W$)", N, 3)

SIR/XS Visual PQL 366

COVPUTE POS2 = REGEXP(TEXT, "\w(\W$)", N, 3)

IF (POS1 EQ 0) EXIT LOOP

WRI TE "WORD# " N [SBST(TEXT, POS1, 1+P0S2- POSL) |
. COMPUTE N = N + 1
END LOOP
END PROGRAM

4) Verify entry of an email address. From the start of the line (*) to the @must contain
one or more (+) alphanumeric characters or ._%- ([A- Za- z0- 9. _%]) then one or more
aphanumericor . - ([A- za-z0-9. -1). aliteral . (\.) followed by two to four ({ 2, 4})
alphabetic characters ([A- za- z]).

PROGRAM
c
c Check an enmil address
c
STRI NG*80 TEXT
SET TEXT ("")
LOOP
DI SPLAY TEXTBOX "Enter a valid email address” response RC, TEXT
| FNOT (RC GT 0) EXIT LOOP
. | FTHEN (REGEXP(TEXT, ""[A-Za-z0-9. %] +@ A-Za-z0-9. -] +\. [A- Za-
z]{2,4}%",1,3) EQ 0)
DI SPLAY ERRORBOX " is an invalid emai|l address"
NEXT LOCP
ELSE
DI SPLAY | NFOBOX "Thank you"
EXIT LOCP
ENDI F
END LOCP
END PROGRAM

REGREP
str =
REGREP(string, mat ch_regul ar _expressi on, repl ace_regul ar _expression,nth,s

tyle)

Searches a string for the nth occurrence of a substring as specified by the regular
expression and replaces that substring as specified by the replace regular expression. The
function returns the updated string. If any errors are found, the unmodified string is
returned. Please see the previous REGEXP function for details on SIR regular expressions.

REPLACE

str = REPLACE(original, search, repl ace, tinmes, of fset, anchor)

SIR/XS Visual PQL 367

If the search string isfound in the original string, occurrences are replaced by the replace
string. The number of times the string is replaced, the offset for the next starting position,
and an anchor column are also specified. The following example returns "CABCBCBBAA" if
| NLI NE iS " AABABABBAA" .

INLI NE = REPLACE (INLINE, 'A,'C,3,2,0) Whenanything but O is specified asthe
anchor, the string is only replaced once, at the anchor position. The following example
returns " AABCBABBAA" if | NLI NE iS " AABABABBAA".

INLI NE = REPLACE (INLINE, 'A,'C,3,2,4)

REVERSE

str = REVERSE (str)
Reverses a string.
RKEYSI ZE

num = RKEYSI ZE (rtnun

Returns the key length arecord type. Thisisthe sum of the key fields of the record type
plus the case identifier in case structured databases.

RND
num= RND(X [,n])

Returns X rounded to n decimal places. Express n as powers of 10, negative for numbers
smaller than 1. Omit n or specify O to round to integers. Rounding is done by adding
0.5*10" to positive numbers, subtracting 0.5* 10" from negative then truncating.

RNVFI LE
num = num = RNMFI LE (ol dnane_str, newnane_str)
Renames afile from oldname_str to newname_str. Returns O for a success and -1 for fail.
ROWCOUNT
num = ROACOUNT (conid, statid)

Client/Server function. Returns a count of rows created by the execute command. When
using ODBC, this depends on the ODBC source and may not be available (returns-1).

RRECSEC

num = RRECSEC (rtnum

Returns the read security level for arecord type.

SIR/XS Visual PQL 368

RVARSEC

num = RVARSEC (rtnum varname_str)

Returns the read security level for avariable.
SARG
str = SARE num)

Returns string arguments from the parameter list. The argument is the position in the list.
If it is greater than the number of parametersin the list, undefined is returned. (Numeric
parameters are retrieved with the NARG function. NARG(0) returns the number of
parametersin thelist.)

SBST

str = SBST(input_str , start_pos , numchars)

Returns a substring of the input string. The second argument, st art _pos, specifiesthe
position within the input string where the substring begins. The third argument specifies
the number of charactersto retrieve from the input string. If any of the arguments are
undefined or missing, undefined isreturned. If the starting position is larger than the
length of the input string, undefined is returned.

SCROLLAT

num = SCROLLAT(i d)

Returns current line number of scrollable gui control.
SCROLLTO

num = SCROLLTQ(i d, i ne)

Sets current line number of scrollable gui control.
SEEK

num = SEEK(attribute_exp, position)

Sets position of currently open file where position is the number of characters to move
from the current location in thefile. If positionis-1 it movesto EOF; if positionis-2
then it doesn't move and just returns current position; if position is -3 it moves to the start
of the file. To move to an absolute position, first move to the start of the file and then to
the position.

SIR/XS Visual PQL 369

The return value is the new pointer position. The attribute expression is the attribute
associated with thisfile. To specify this directly (as opposed to specifying avariable
name which contains the attribute), enclose the name in quotes.

SERADM N

n = SERADM N (function_type, server_client_id, password)

Client function for PQL Server. Server administration function.

Function types:

1 - number of server clients

2 - server client id of nth client

3 - close server client id (not us) (password)

4 - server client id logon time

5 - server client id last message time

6 - shutdown server

7 - shutdown server when no clients (password)

The server client id is required on function types 3,4 and 5. Server client ids are returned
by function type 2. Use the nth client number as the client id on function type 2 (O returns
our server client id). Use 0 on function types 1,6 and 7.

Do not use SERADM N function type 3 to close this client.

SERADM S

str = SERADM S (function_type,client_id, password)

Client function for PQL Server. Server admin functions that return a string value.
Function types:
1 - address/name of client id (O returns our name)

SEREXEC

n = SEREXEC (wait_factor)

Send to server to execute previous sent commands.

0 Wait means return without waiting;

1 means wait one interval, 2 two intervals, etc. The basic server timeout interval can be
setonthesir.ini file-thesettingiscaledserver. timeout . If not set, the default is5
seconds.

Returns completion code:

-1 - Timeout. Note that the server continues to run the request - it isjust taking longer
than expected. The SERTEST function can be used subsequently to inquire as to status.

0 Completed OK

1 Completed with warnings

2 Completed with errors

Other values can set by user program on server using the SETRC (RC) function (note user
return codes are returned as positive numbers so should avoid values of 1 or 2).

SIR/XS Visual PQL 370

SERGET
str = SERGET (nunber_of _|ines_to_skip)

Returns asingle line of output. If the number of linesto skip is0, the next lineis
returned, otherwise it is the line after the skipped lines.

SERLI NES
n = (dumy)

Returns the number of lines left. If this function is invoked after lines are returned or
skipped, it returns the remaining number of lines.

SERLOG

n = SERLOG (Server_nane, Password)

Logs on/off to the server. Thisfirst logs off any current connection then, if the name of
the server to logon to is not blank, thisis used to try to log on to. Returns -1 if the logon
fails. A string containing the password isrequired. If the server is started with UPASS
specified then the password must match the server administration password. Note that
while specified as a string or string variable, the password isa SIR/XSname and is
uppercase if not a non-standard name in curly brackets{}.

SERNOOUT
num = SERNOOUT (n)

PQL Server side function that controls SERVER NOOUTPUT flag. If flag is set on, then any
output directed to standard output isthrown away. The flag is set off initialy for each
client execution. The setting is still maintained once the program that uses this function
ends.

n = 0 returns setting 1 - On 0 Off

n =1 sets no output on

n = -1 sets no output of f

SERSEND

n = SERSEND (string)

Sends string to the server. The string is aline of input.
SERSENDB

n = SERSENDB (buffer_nane)

Sends contents of buffer to the server.

SIR/XS Visual PQL 371

SERTEST

n = SERTEST (wait _factor)

Useif haven't waited for SEREXEC to complete or had atimeout on the execution. Returns
same compl etion codes as SEREXEC

SERVWRI TE

num = SERWRI TE (string)

PQL Server side function that writes lines to output regardless of setting of SERVER
NOOUTPUT flag

SETAKL

n = SETAKL(ti me, passwor d)

Setsthe client autokill limit in minutes. If aclient isidle for the given number of minutes
then they will be automatically disconnected by master. If master has been started with a
password, this must match the quoted password, otherwise any name can be used.

SETDFC

n = SETDFC(ti me, passwor d)

Sets the master difference file copy interval in minutes. If master has been started with a
password, this must match the quoted password, otherwise any name can be used.

SETDI R

n = SETDI R(di rectory_nane)

Sets the default directory.
SETPOS

n = SETPOS(i d, pos)

Sets the position of amulti-line gui control.
SETRANGE

n = SETRANCGE(i d, mi n, max)

Sets the range of a gui spin/slider/progress control.

SIR/XS Visual PQL 372

Sets the maximum number of characters allowed in an edit or text field (ignoring the
minimum parameter).

SETRC

n = SETRC(nuneric_return_code)

Sets the return code SIR/X S sends to the operating system when it finishes.
SGET

str = SGET(varnanme_str)

Returns the value of the specified string variable. The argument is a string variable,
guoted string constant or string expression whose value is the name of a common, record
or program variable.

SGLOBAL

str = SG.OBAL(varnane_str)

Returns the string value of a global variable. The argument is a string variable, constant
or expression that specifies aglobal variable name. If it is not the name of a defined
global variable, undefined is returned. Use the NGLOBAL function for numeric global
variables.

SI GN
num = SIGN(nhum X , numyY)

Transfers the sign (positive or negative) of num Y to the absolute value of num X. Zerois
positive.

SI'N

num = SIN(radnum)

Returns the trigonometric sine of radnum, where r adnumis specified in radians.
S| RUSER

name = SI RUSER(name)

Setg/returns the current SIR/XS user name. This iswritten to the database journal to
identify the person who entered particular sets of database updates. Specify aname (up to
32 characters). No trandation (upper/lower case, etc.) isdone. To ssimply return the
current user name, pass either a missing name or a zero length name.

SIR/XS Visual PQL 373

USER = SIRUSER ('') returnsexisting name to string variable USER

USER = SIRUSER (' M. J. Snith') setsthe name and returnsit to string variable
USER.

SMVAX

str = SMAX (rtnum, varnanme_str)

Returns the maximum valid string value for the specified variable. If the record number
(rtnum) is negative, the function appliesto a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

SM N

str = SMN (rtnum, varnanme_str)

Returns the minimum valid string value for the specified variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

SPREAD

str = SPREAD (input_str)

Returns a string with a blank inserted between each character of the input string.
SPUT

str = SPUT (varnane_str, str)

Stores the value of string argument st r in the specified string variable. The variable
name argument is a string variable name, quoted string constant or string expression
whose value is the name of acommon, record or program variable. The value returned by
the function is the value stored in the variable (possibly undefined, missing, etc.). If the
variable refers to acommon or record variable, the Retrieval must be in UPDATE mode.

SQRT

num = SOQRT(X)

Returns the square root of X. Missing is returned for negative values.
SRCH

num = SRCH(varX , varY , Z)

Returns the location of the value Z in the table of valuesVarX to VarY, where VarX and
VarY arelocal numeric variables defined in the program from VarX to VarY. These

SIR/XS Visual PQL 374

cannot be arrays or string variables. The values in the variables must be in ascending
order.

For example, if Z matched the fourth value in the table, SRCH returns 4. If no matchis
found, a negative value is returned. The value indicates the correct position for Z for in
the table. For example:

SET I NCOVE1l TO I NCOVES8 (1,1.5,2.2,2.5,3,3.1, 3.5, 4)
COVPUTE LOC = SRCH (| NCOVEL, | NCOVES, SALARY)

If SALARY has the value 3.5, the function returns 7, because the seventh variable has the
value 3.5. If SALARY hasthe value 2, the function returns the value -3 indicating that the
valueis not present, and that the correct place in thelist isin the third position.

SREAD
str = SREAD(pr onpt)

Pops up a box on the screen with the specified prompt and returns a string from the user.
The maximum input is 4094 characters; long strings are scrolled horizontally.

SRST

num = SRST (strX ,strY)

Returns the column number within strX that matches strY. If strY isdelimited by
characters other than letters or numbers, SRST returns a positive number, otherwise SRST
returns a negative value. If strY isnot a substring of strX, SRST returns a zero value. The
length of strX must be greater than or equal to the length of strY. For example:

POS1 = SRST ('BUBBLE GUM,'GUM) results in: POS1 = 8
POS2 = SRST (" ANITA TINKLE ,' ') results in: POS3 = -6
STATTYPE

num = STATTYPE (rtnum, varname_str)

Indicatesif the variable is acontrol or observation variable. If the record number (rtnum)
is negative, the function applies to asummary variable; if rtnum is one more than the
maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.

0 = not a control or observation variable

1 = observation var

2 = control var

STDEV

num= STDEV(X1 , X ,...., Xn)

SIR/XS Visual PQL 375

Returns the standard deviation for the values in the list that are not missing or undefined.
If fewer than 2 values are not missing or undefined, a value of undefined is returned.

STDEVR

num = STDEVR(var nane)

Returns the standard deviation for the values of the specified variable encountered during
aPROCESS REC Or PROCESS ROWS loop that are not missing or undefined. If fewer than 2
values are not missing or undefined, avalue of undefined is returned.

STDNAME

nane = STDNAME(nane)

Checksif nameis standard and puts curly brackets around non-standard names. The
function ignores leading and trailing spaces and any trailing characters over legal name
length. If the name has leading or trailing quotes or curly brackets, these are stripped off.
A standard name starts with an uppercase letter and contains only uppercase letters, digits
or thefour characters $, #, @, and _. If it isa standard name, it is returned left justified.
(Note that this function does NOT trandlate lower case |etters to uppercase. Any
lowercase means that the name is non-standard.

If it isanon-standard name, it iswrapped in curly brackets and returned left justified. If a
name has embedded curly brackets, undefined is returned.

SUBDI R

str = SUBDIR (dir_str,sub_str)

Concatenates a subdirectory name to a directory path in correct system specific manner
€.g.. DIR = SUBDI R(CURDI R(0), "dat a") returnsastring like C:\\SIR_XS\data\ under
windows or /ust/SIR/X S/data/ under unix.

SUBSTR

str = SUBSTR(string,start,|en)

Same as SBST function. Returns a null string if the starting position is outside the length
of the string.

SUM
num = SUM(X1, X ,...., Xn)

Returns the sum of the valuesin the list that are not missing or undefined. The maximum
number of variables allowed in the argument list is 128. Arguments must be numeric.

SUVR

SIR/XS Visual PQL 376

num = SUMR(X)

Returns the sum of the values of X encountered during a PROCESS REC Or PROCESS ROWS
loop that are not missing or undefined.

SVVAL

str = SWAL (rtnum, varnane_str , n)

Returns the value of the nth valid value of a categorical string variable. If the record
number (rtnum) is negative, the function applies to asummary variable; if rtnum is one
more than the maximum record count (i.e. NRECS(0)+1) then this applies to a standard
variable.

SYSTEM
num = SYSTEM X)

Extracts awide variety of information from an executing Visua PQL program set. Some
return undefined if not in a RETRI EVAL.

Number Return Value
SYSTEM 1) The CPU time elapsed since beginning of run

SYSTEM 2) A platform number, for example:
3 Sun Risc Solaris
7 Compag Tru64 Unix
8 Compag Alpha OpenVM S
10I1BM AIX
12 HP 9000 HP-UX
13 Silicon Graphics IRIX
26 Intel Linux
27 MS Windows
28 Macintosh

SYSTEM 3) The update level for the current case/record. Thisisthe update level at
which thiswas last written. If it has previously been updated in the current
update run, it is 1 greater than the database update level (system(23)).

SYSTEM 4) 1 if current caseis available for processing, returnsa0 if current caseis not
available for processing

SYSTEM 5) 1 if current case has been modified, returns a0 is current case has not been
modified

SYSTEM 6) 1 if current record is available for processing, returns a0 if current record
isnot available for processing

SYSTEM 7) 1 if current record has been modified, returns a0 if current record has not
been modified

SIR/XS

SYSTEM 8)

SYSTEM 9)

SYSTEM 10)
SYSTEM 11)
SYSTEM 12)
SYSTEM 13)
SYSTEM 14)

SYSTEM 15)

SYSTEM 16)

SYSTEM 17)

SYSTEM 18)
SYSTEM 19)

SYSTEM 20)
SYSTEM 21)
SYSTEM 22)
SYSTEM 23)
SYSTEM 24)
SYSTEM 25)
SYSTEM 26)
SYSTEM 27)

SYSTEM 28)

SYSTEM 29)

SYSTEM 30)

SYSTEM 31)
SYSTEM 32)
SYSTEM 33)
SYSTEM 34)

Visual PQL 377

If current case is available for processing, returns the number of records of
all types belonging to the current case

The current output file page number

The lines remaining on current output file page
The total number or errorsin the session

The number of errors during the current task
The number of warnings during the current task

1if last CASE | S block was executed, returnsa O if last CASE | S block was
not executed

1if last CASE | S block created acase, returnsa O if last CASE 1 S block did
not create a case

1if last RECORD | S block was executed, returns a0 if last RECORD | S
block was not executed

1if last RECORD | S block created arecord, returnsaO if last RECORD | S
block did not create arecord

The current row block number

The current row block position. Can be used to save arow position and
retrieve the datawith an OLD ROW | S AT (bl ock, pos)

The number of cases (CIRS) created during current run
The number of cases (CIRs) updated during current run
The number of cases (CIRs) deleted during current run
The database update |evel

The number of casesin database

The number of data records in database

The line width of current output page

1if thelast Row I S block was executed, returns a0 if thelast Row | S block
was not executed

1if thelast Row I S block created arow, returns a0 if the last ROW I S block
did not create arow

1if the current row is available for processing, returnsa0 if the current
row is not available for processing

1if the current row was modified, returns a0 if the current row was not
modified

Therow ordinal of the current row

The number of rows in the table

Not used

The amount of table space, in SIR double words, used for the Visua POL

SIR/XS

SYSTEM 35)

SYSTEM 36)

SYSTEM 37)

SYSTEM 38)

SYSTEM 39)

SYSTEM 40)

SYSTEM 41)
SYSTEM 42)
SYSTEM 43)
SYSTEM 44)
SYSTEM 45)
SYSTEM 46)
SYSTEM 47)
SYSTEM 48)
SYSTEM 49)
SYSTEM 50)
SYSTEM 51)
SYSTEM 52)
SYSTEM 53)
SYSTEM 54)
SYSTEM 55)
SYSTEM 56)
SYSTEM 57)
SYSTEM 58)
SYSTEM 59)
SYSTEM 60)

Visual PQL 378

execution stack

The amount of table space, in SIR double words, used for the program
schema maps

1if the current record is available. A O (zero) isreturned if accessto the
current record is denied for concurrent operations because the record is
locked by another process with a non-compatible lock type

1if the current CIR isavailable. A O (zero) isreturned if accessto the
current CIR is denied because the CIR is locked by another process with a
non-compatible lock type

1if the session is a concurrent session using Master. A 0 (zero) is returned
if thisisanormal, single-user session

The ordinal number of the default database. No connected database returns
0

Indicates the number of connected databases. This returns the size of the
connected database table that may include entries for disconnected
databases since the position number associated with a particular connected
database never changes.

The default string size

The Editor Type setting number

The Error Limit setting (num)

Encryption on for database (1 on, 0 off)

The current user has DBA rights (1 yes,0 no)
The Page Length setting (num)

The Page Width setting (num)

The Loading Factor setting (num)-real

The Sort Number (SORTN) setting (num)
The Sort option (Obsolete)

The Warning Limit setting (num)

The Number of Attribute settings

The Number of Global variables set

The number of database data files. O=standard
The Century split year

The number of Buffers defined

The number of familiesin the default procfile
Printback (1 on, O off)

Printback dorepeat (1 on, 0 off)

Printback calls (1 on, O off)

SIR/XS

SYSTEM 61)
SYSTEM 62)
SYSTEM 63)
SYSTEM 64)
SYSTEM 65)
SYSTEM 66)
SYSTEM 67)
SYSTEM 68)
SYSTEM 69)
SYSTEM 70)
SYSTEM 71)
SYSTEM 72)
SYSTEM 73)
SYSTEM 74)
SYSTEM 75)
SYSTEM 76)
SYSTEM 77)
SYSTEM 78)
SYSTEM 79)
SYSTEM 80)

TABI NDN

Visual PQL

Printback task stats (1 on, O off)
Printback remarks (1 on, 0 off)

Printback skipped commands (1 on, O off)
Printback user created attributes (1 on, O off)

Printback quiet (1 on, O off)

Master Backup Interval
Backup Count

Number of Master clients

Number of Master attached databases

Password on default member? (1 Yes, 0 No)

Default member type (1:T; 2:E; 3:P; 4:0; 5:V; 6:M)
Default member public (1 Yes, 0 No)

Length in bytes of default member
Creation date of default member
Creation time of default member

Modification date of default member
Modification time of default member
Family password on default family? (1 Yes, 0 No)

Linesin default member

Status of window paging. Paging on returns 1

str = TABINDN (fn,tn,in)

Returns the index name of nth index. See TABI NDS.

TABI NDS

num = TABI NDS(f n, t n)

Returns the number of indexes on nth table.

TABI NDT

str = TABINDT (fn,tn,in,vn)

Returns the variable name and sort sequence of nth variable on index.

TABI NDU

379

SIR/XS Visual PQL 380

num = TABINDU (fn, tn,in)

Returns whether nth index is unique O - Not unique, 1 - Unique.

TABI NDV

num = TABINDV (fn,tn,in)

Returns the number of variablesin nth index.

TABNAVE

str = TABNAME(fn, tn)

Returns the name of nth table. TFTABS(fn) returns number of tables on nth tabfile.
TABRECS

n = TABRECS(fn, tn)

Returns the number of rows on the nth table. TFTABS(fn) returns number of tables on
nth tabfile.

TABVARS

num = TABVARS(f n, tn)

Returns the number of variablesin nth table.
TABVI NFN

num = TABVI NFN(fn, tn, vn, n)

Returns various numeric data about the nth variable in nth table. The type of datais set by
the fourth parameter as follows:

1 = Count of value |abels

2 = leading zero

3 = print this columm

4 = null not allowed

5 =ONif value labels printed
6 = set break variable

7 = option G on break

8 = option C on break

9 = option P on break
10 = var label as col heading
11 = unique flag

12 = subtotal title to the left
13 = count of ranges

14 = SIR data type

SIR/XS Visual PQL 381

TABVI NFS
str = TABVINFN(fn, tn, vn,n)

Returns various string data about the nth variable in nth table. The type of datais set by
the fourth parameter as follows:

vari abl e | abel

LNEG

LPOS

NULL

ZERO

TNEG

TPCS

SEPARATE

date/tinme format (COL should have date/tinme type)
break string

POoOoO~NOOA~WNE

0
TABVNANVE

str = TABVNAME(fn, tn, vn)

Returns the variable name for vnth var on tnth table.
TABVRANG

str = TABVRANG fn, tn,vn,rn)

Returns a string representation of the value(s) for the rnth range for vnth var on tnth table.
String starts with keyword VALID or MISSING to indicate the type of range. Then string
may have two values separated by :. Also may contain keywords BLANK, LOWEST and
HIGHEST.

TABVTYPE

str = TABVTYPE(fn, tn,vn)

Returns the variable type for vnth var on tnth table.

TABWVALI

n = TABWALI (fn, tn, vn, expr)

Validates the value in the expression (numeric or string) against the vnth var on tnth

table. Returns a code indicating whether avalue is allowed in a variable. The codes are:

0 = Valid val ue
Negative = Error detected
2 = Violation of specified valid values or ranges

SIR/XS Visual PQL 382

3 - n Mssing value 0 to n
4 = Mssing value 1

5 = Mssing value 2, etc.
TABVVLAB

str = TABVVLAB(fn,tn,vn,vln)

Returns the label for the vinth value label for vnth var on tnth table.

TABVVVAL

str = TABVWAL(fn,tn,vn,vln)

Returns the value for the vinth value label for vnth var on tnth table.
TAN

num = TAN(X)

Returns the trigonometric tangent of X, where x isin radians. If X isan odd integral
multiple of p/ 2 (e.g., p/ 2, 3p/ 2, 5p/ 2, €tc.), the value of undefined is returned.

TANH
num = TANH(X)
Returns the hyperbolic tangent of X.
TFACCESS
str = TFACCESS(f n)
Returns the access type a(uto),r(ead) w(rite) of nth tabfile.
TFATTR
str = TFATTR(fn)
Returns the internal attribute name of nth tabfile. Thisis the same as the tabfile name.
TFCOUNT
num = TFCOUNT(dum
Returns the number of connected tabfiles.

TFFI LE

SIR/XS Visual PQL

str = TFFI LE(fn)

Returns the filename of nth tabfile.

TFGRNANME

str = TFGRNAME(f n)

Returns the group name of nth tabfile.

TFGRPW

str = TFGRPW f n)

Returns the group password of nth tabfile.

TFINNANME

str = TFINNAME(f n)

Returns the journal name of nth tabfile.

TFENAME

str = TFNAME(f n)

Returns the name of nth tabfile.

TFTABS

num = TFTABS(f n)

Returns the number of tables on nth tabfile.

TFUSNANME

str = TFUSNAME(f n)

Returns the user name of nth tabfile.

TFUSPW

str = TFUSPW f n)

Returns the user password of nth tabfile.
TI ME

num = TI ME(X)

383

SIR/XS Visual PQL 384

Returns an integer that is the number of seconds from midnight. The input argument, X,
isan integer in the range 0 - 235959; the first two digits are hours, the next two are
minutes and the last two are seconds. For example, to calculate the number of seconds
from midnight to 8:30 AM.
SLEEPSEC = TI ME(083000)

TI MEC
str = TIMEC(X, time_format)

Converts an integer, X, into atime formatted string. See time formats for a complete
description. Values of X that are out of range are returned as undefined. For example:

WAKESTR = Tl MEC(ALARM ' HH: MM SS')
TI MEMAP

str = TIMEMAP (rtnum varname_str)

Returns a string with the time format (map) of the specified time variable. If the variable
isnot atime variable, undefined is returned. For example, TI MESTR equals "HH:MM:SS'
if time variable | NTI ME has that time format. If the record number (rthum) is negative, the
function applies to a summary variable; if rtnum is one more than the maximum record
count (i.e. NRECS(0)+1) then this appliesto a standard variable.

TI MESTR = TI MEMAP (1, 'INTIME)
TODAY

num = TODAY(dumy)

Returns the "date integer” representation of the current date. The argument is a dummy
numeric argument (specify 0).

TRIM
str = TRIM string_expression)
Deletes trailing blanks from the string expression.
TRI ML
str = TRIM(string_expression)
Deletes |eading blanks from the string expression.
TRI MR

str = TRIMR(string_expression)

SIR/XS Visual PQL 385

Deletes leading and trailing blanks from the string expression.
TR MR

str = TRI MR(A)

See TRI Mfunction.

TRUNC

num= (X [, n])

See Al NT function.

TSTODT

date = TSTODT (tinestanp)

Takes areal* 8 timestamp (produced by DTTOTS and returns the date integer component.

TSTOTM

time = TSTOTM (ti nestanp)

Takes area* 8 timestamp (produced by DTTOTS and returns the time integer component.
TWRI TE

str = TWRI TE(string_expression)

Writes the specified string expression to the scrolled output window. This function can be
useful when a program is run with an alternate output file (i.e., with the interactive SET
outPUT command) and can only be used during an interactive session.

UPDLEVEL

num = UPDLEVEL (0)

Returns the current database update level. (Same as SYSTEM 23) .)
UPGET

str = UPGET (key_str)

Gets string value (User Preference) identified by key _str (fromsir. i ni file)
€.g. COWPUTE TI TLE= UPGET(' SIR TI TLE')

UPPER

SIR/XS Visual PQL 386

str = UPPER(string_expression)

Changes lowercase letters to uppercase.
UPSET

num = UPSET (key_str,val _str)

Sets string value (User Preference) identified by key_str (insi r. i ni file). Returns zero
for success, -1 for failure.
e.g. COWPUTE rc= UPSET(' SIR TITLE ,"' SIR/ XS')

VALI DATE

num = VALI DATE (rtnum varnanme_str ,val ue)

Returns a code indicating whether avalue is allowed in avariable. If the record number
(rtnum) is negative, the function appliesto a summary variable. The codes are:

Valid val ue

Wong data type/ Not valid val ue

Violation of specified valid val ues or ranges

M ssing value 0 (Undefined or system mi ssing val ue)
M ssing value 1

M ssing val ue 2

M ssing val ue 3

OO, WNEO
1T 1 I O | A O

VALLAB

str = VALLAB(varnane)

Returns a character string containing the value label for the current value of the specified
variable. If thereisno label defined for the value, a zero length string is returned. The
argument is a variable name, not a constant or expression.

VALLABSC

str = VALLABSC (rtnum var nane_str, val ue)

Returns the value label (up to 78 characters) for the specified value of avariable. If the
record number (rtnum) is negative, the function applies to asummary variable; if rtnumis
one more than the maximum record count (i.e. NRECS(0)+1) then this appliesto a
standard variable.

The value can be numeric or string.

For example, suppose the fourth value label for avariable DI Vi SI oNin record type 2 has
value 10, label 'Head Office' then:

SIR/XS Visual PQL 387

THI SPCS = VALLABSC (2, 'DIVISION , 10)
returns 'Head Office'.

VALLABSN

str = VALLABSN (rtnum varnane_str , n)

Returns the nth value label for avariable (up to 78 characters). If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
Note that the number of labelsis returned by NVALLAB.

For example, suppose the fourth value label for avariable DI VI SI ONin record type 2 has
value 10, label 'Head Office' then:

THI SPOCS = VALLABSN (2, 'DIVISION , 4)

returns 'Head Office'.
VALLABSP

n = VALLABSP (rtnum varname_str , val ue)

Returns the position (nth) of the specified value associated with value labels for a
variable. If the record number (rtnum) is negative, the function applies to a summary
variable; if rtnum is one more than the maximum record count (i.e. NRECS(0)+1) then
this appliesto a standard variable.

The value can be numeric or string.

For example, suppose the fourth value label for avariable DI vi SI ONin record type 2 has
value 10, label 'Head Office' then:

POS = VALLABSP (2, 'DIVISION , 10)

returns 4.
VALLABSV

str = VALLABSV (rtnum varnane_str , n)

Returns the nth value associated with value labels for a variable. If the record number
(rtnum) is negative, the function applies to a summary variable; if rtnum is one more than
the maximum record count (i.e. NRECS(0)+1) then this applies to a standard variable.
Note that the number of labelsis returned by NVALLAB.

SIR/XS Visual PQL 388

For example, suppose the fourth value label for avariable DI VI SI ONin record type 2 has
value 10, label 'Head Office' then:

THI SPOS = VALLABSV (2, 'DIVISION , 4)

returns '10'.
VARDOCSN

str = VARDOCSN (rtnum varnane_str,line_no)

Returns the nth line of documentation for a variable. Use the NVARDOC function to find
total number of lines. (Note that variable documentation does not apply to summary
variables. Simply use comment lines in programs to document.) In the following
example, if MARSTAT in record type 1 has a single line of variable documentation of

"Current marital status of employee”, then COLDESC is set to that string value.”.
COLDESC = VARDOCSN (1, 'MARSTAT', 1)

VARGET
str = VARGET (expression)

Returns a string representation of the value in the variable named in the expression. This
works on all variable types. It converts catvar, date, time, integer and real to astring
according to the format of the specified variable as per the VFORMAT function. Specify a
string variable or expression that contains the name of another variable. For example:

| NTEGER*1 | NT1
STRING'8 STRL STR2

COWPUTE INT1 = 1; STRL = '[NT1'
COVPUTE STR2 = VARGET (STR1)
WRI TE STR1 STR2

Qut put is: I NT1 1
VARLAB

str = VARLAB(varnane)

Returns the variable label (up to 78 characters) for avariable. If thereis no label defined
for the variable, the variable name is returned. The argument is a variable name, not a
constant or expression. If the